
Supplementary Material #2: X3D Parsing Algorithm

Fig. 1 summarizes the pipeline of the X3D parser. In the following,
we will elaborate the components in the pipeline. Relevant listings
from the paper are replicated here for clarity.
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Figure 1: X3D parser pipeline.

XML Skeleton We define XML skeleton to be a list of XML tags
and attributes, appearing in the same order as the input file.

We use an automaton-based method to generate the skeleton. The
input file is parsed by a finite automaton, where a state transition
is made at each character. Automaton states are computed using a
function composition scan as in [Hillis and Guy L. Steele 1986].
Tags and attributes are then recognized at specific state/character
combinations.

Match DEF/USE X3D allows reuse of data using DEF/USE at-
tributes. A DEF attribute defines the name of a tag. A later USE
attribute with the same name indicates a reference to the matching
DEF. The DEF tag’s data is reused in the USE’s context.

To find a matching DEF for each USE, we construct a hash table
for all DEF names. A superstep fills in the table for each DEF,
and a subsequent superstep looks up names for each USE. We cur-
rently do not handle hash collisions, as none has occurred in our
test scenes.

Extracting numbers The subroutine in Listing 1 is used to extract
numbers from attribute values.

Listing 1 Number extraction

/*
extract numbers from plain text

input:

begin/end: offset to begin/end of regions

n: number of regions to parse

returns:

parsed numbers

*/

float* getNumbers(int* begin, int* end, int n){
float* ret = NULL;

spawn(n){
id = thread.rank;

s = begin[id]; e = end[id];

pt = s+thread.fork(e-s+1);

c = charAt(pt-1); c2 = charAt(pt);

thread.kill(isDigit(c)||!isDigit(c2));

require

ret = dnew[thread.size]float;

ret[thread.rank] = parseNumber(pt);

}
return ret;

}

Parse hierarchy We store the hierarchical structure of a X3D file
as a pointer to its parent in each tag.

A tag’s parent is computed by finding the nearest preceding node
with exactly one fewer nest level. First, a scan is used to compute
nest levels, by substituting 1 for beginning tags and -1 for end tags.
The maximal nest level is then computed using a reduction. Finally,
parents for nodes on each level are computed using a scan with op-
erator replace(a,b)= b==-1?a:b. In this replace scan, node
ID is substituted for nodes on the parent level, and -1 is substituted
for other nodes.

Scene conversion For each geometry tag, corresponding connec-
tivity, coordinates and material tags are all found using the replace
scan. A GPU-ready vertex array is then constructed using these
information.

For subsequent normal computing, a one-ring neighborhood is
computed using Listing 2.

Listing 2 Find neighboring triangles

findFaces(int* pf, int* hd, int* ib, int n){
spawn(n*3){

rk = thread.rank;

f = rk/3; //face id

v = ib[rk]; //vertex id

thread.sortby(v);

rk = thread.rank;

pf[rk] = f;

barrier;

if(rk==0||thread.get(rk-1,v)!=v)

hd[v] = rk;

}
}

Data in miscellaneous tags like lighting and camera are collected
and provided on the CPU during rendering. We compact them into
a list and send the list to the CPU. Such tags typically contain in-
significant data, and its overhead does not have a noticeable impact
on performance.

Rendering During rendering, we first handle animation by up-
dating the vertex buffer using current frame’s data. Vertices are
then transformed, and normals and texture coordinates are com-
puted. The prepared vertex buffer is finally shaded and rendered
using OpenGL.
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