
Supplementary Material #2: X3D Parsing Algorithm

Fig. 1 summarizes the pipeline of the X3D parser. In the following,
we will elaborate the components in the pipeline. Relevant listings
from the paper are replicated here for clarity.

 Scene conversionParse XML skeleton

(tags and attributes)

Match DEF/USE

Extract number

from attributes

Parse hierarchical

structure of tags

Parsing pipeline

Compute normals

Compute shading

OpenGL render

Render pipeline

Convert geometry to

vertex array

Preprocess for normal

computing

Process

miscellaneous tags

Compute texcoords

Build coord/material/

index correspondence Hierarchical

transformation

Handle animation

Figure 1: X3D parser pipeline.

XML Skeleton We define XML skeleton to be a list of XML tags
and attributes, appearing in the same order as the input file.

We use an automaton-based method to generate the skeleton. The
input file is parsed by a finite automaton, where a state transition
is made at each character. Automaton states are computed using a
function composition scan as in [Hillis and Guy L. Steele 1986].
Tags and attributes are then recognized at specific state/character
combinations.

Match DEF/USE X3D allows reuse of data using DEF/USE at-
tributes. A DEF attribute defines the name of a tag. A later USE
attribute with the same name indicates a reference to the matching
DEF. The DEF tag’s data is reused in the USE’s context.

To find a matching DEF for each USE, we construct a hash table
for all DEF names. A superstep fills in the table for each DEF,
and a subsequent superstep looks up names for each USE. We cur-
rently do not handle hash collisions, as none has occurred in our
test scenes.

Extracting numbers The subroutine in Listing 1 is used to extract
numbers from attribute values.

Listing 1 Number extraction

/*
extract numbers from plain text

input:

begin/end: offset to begin/end of regions

n: number of regions to parse

returns:

parsed numbers

*/

float* getNumbers(int* begin, int* end, int n){
float* ret = NULL;

spawn(n){
id = thread.rank;

s = begin[id]; e = end[id];

pt = s+thread.fork(e-s+1);

c = charAt(pt-1); c2 = charAt(pt);

thread.kill(isDigit(c)||!isDigit(c2));

require

ret = dnew[thread.size]float;

ret[thread.rank] = parseNumber(pt);

}
return ret;

}

Parse hierarchy We store the hierarchical structure of a X3D file
as a pointer to its parent in each tag.

A tag’s parent is computed by finding the nearest preceding node
with exactly one fewer nest level. First, a scan is used to compute
nest levels, by substituting 1 for beginning tags and -1 for end tags.
The maximal nest level is then computed using a reduction. Finally,
parents for nodes on each level are computed using a scan with op-
erator replace(a,b)= b==-1?a:b. In this replace scan, node
ID is substituted for nodes on the parent level, and -1 is substituted
for other nodes.

Scene conversion For each geometry tag, corresponding connec-
tivity, coordinates and material tags are all found using the replace
scan. A GPU-ready vertex array is then constructed using these
information.

For subsequent normal computing, a one-ring neighborhood is
computed using Listing 2.

Listing 2 Find neighboring triangles

findFaces(int* pf, int* hd, int* ib, int n){
spawn(n*3){

rk = thread.rank;

f = rk/3; //face id

v = ib[rk]; //vertex id

thread.sortby(v);

rk = thread.rank;

pf[rk] = f;

barrier;

if(rk==0||thread.get(rk-1,v)!=v)

hd[v] = rk;

}
}

Data in miscellaneous tags like lighting and camera are collected
and provided on the CPU during rendering. We compact them into
a list and send the list to the CPU. Such tags typically contain in-
significant data, and its overhead does not have a noticeable impact
on performance.

Rendering During rendering, we first handle animation by up-
dating the vertex buffer using current frame’s data. Vertices are
then transformed, and normals and texture coordinates are com-
puted. The prepared vertex buffer is finally shaded and rendered
using OpenGL.

References

HILLIS, W. D., AND GUY L. STEELE, J. 1986. Data parallel
algorithms. Commun. ACM 29, 12, 1170–1183.

