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Abstract

In this paper we present an approach to enrich skeleton-driven ani-
mations with physically-based secondary deformation in real time.
To achieve this goal, we propose a novel, surface-based deformable
model that can interactively emulate the dynamics of both low-
and high-frequency volumetric effects. Given a surface mesh and
a few sample sequences of its physical behavior, a set of motion
parameters of the material are learned during an off-line prepro-
cessing step. The deformable model is then applicable to any given
skeleton-driven animation of the surface mesh. Additionally, our
dynamic skinning technique can be entirely implemented on GPUs
and executed with great efficiency. Thus, with minimal changes
to the conventional graphics pipeline, our approach can drastically
enhance the visual experience of skeleton-driven animations by
adding secondary deformation in real time.

Keywords: skeleton-driven mesh deformation, secondary motion,
physically-based animation, finite element method

1 Introduction

Skeleton-driven animation is widely used in the computer graph-
ics industry, especially for interactive applications such as video
games. However, such animations are often devoid of intricate
physical motion details (i.e., secondary deformation [O’Brien et al.
2000]) due to the small number of degrees of freedom (DoFs) in
typical skeletons and the time-consuming manual work required
to add physically-realistic secondary motions. With physically-
based simulators, fine physical details up to the spatial and tem-
poral resolution can be simulated. Unfortunately, simulating high
frequency motions on top of an arbitrary skeleton-driven anima-
tion is rarely achievable in real time. In this paper we present an
approach for adding physically-realistic secondary deformation to
skeleton-driven animations at real-time rates.

To this end, we propose a simplified deformable model which is
surface-based, interactive, and capable of exhibiting both low- and
high-frequency volumetric effects. This interactive model con-
tains only surface vertices—no interior vertices are necessary. It
is capable of generating low-frequency phenomena such as muscle
bulging, as well as high-frequency vibrations like the jiggling of fat
tissues. While only surface vertices are required, the model mimics
much of the behavior of a real volumetric material.
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Figure 1: Given the skeleton-driven animation of an Armadillo
jumping (a), we fit the parameters of our model based on a phys-
ical simulation (b), and reproduce the secondary deformation (c).
Given another animation of an Armadillo running (d), our model
adds secondary deformation in real time (e). Note that even though
physical accuracy is not our primary concern, our result (e) bears
a strong resemblance to the actual physical simulation (f). See the
companion video for a live demo.

Technically, the proposed method is a surface-based approximation
to a linear elasticity simulation. The skeleton animation drives the
motion of vertices, while elastic forces from both the surface neigh-
bors and the interior of the mesh as well as damping are taken into
account. Since there are no interior vertices, elastic forces from the
interior of the mesh are approximated by adding length-maintaining
spokes between the surface vertices and the corresponding bones.
The material properties of the mesh are defined by a set of per-
surface-vertex parameters representing the strength of the above
forces (i.e., neighborhood stiffness, etc.). We propose a fitting al-
gorithm to automatically learn these material parameters from user-
provided examples of skeleton-driven animations, as an alterna-
tive/supplement to tuning the parameters manually. The examples
can be acquired by physically-based simulation. Notice that the
problem we are addressing here is challenging due to the highly
nonlinear effects of (volumetric) elasticity on the surface mesh. We
resolve this issue through an iterative optimization approach.

After the fitting stage, our model is ready to be applied to any
given skeleton-driven animation of the surface mesh. More pre-
cisely, the model takes a skeleton-driven animation as input and de-
termines the motion of the mesh using the set of fitted parameters
and local (1-ring) vertex coordinates information from consecutive
frames. Since only local information is used at runtime, commodity
graphics hardware can be used to exploit vertex-level parallelism.
This produces real-time performance on moderately large meshes,
which is crucial for interactive applications like video games. Im-
plemented as an additional rendering stage, secondary deformation
can thus be added to skeleton-driven animations in real time, with
minimal changes to the conventional graphics pipeline.



1.1 Related Work

Our work is closely related to skeleton-driven deformation tech-
niques, elastic deformable models and parameter fitting algorithms.
We only cover the most relevant references below, as the literature
covering these topics is vast.

Skeleton-driven deformation techniques are extensively used to
drive realistic animated characters. The most pervasive technique
among them is linear blend skinning, also known as skeleton sub-
space deformation (SSD) (i.e., [Magnenat-Thalmann et al. 1988]
and several variants), which was later implemented efficiently on
modern graphics hardware in the form of matrix-palette skinning
[Lee 2006]. Significant improvements [Lewis et al. 2000; Mohr
and Gleicher 2003] are proposed to address well-known artifacts
like collapsing joints. Recently, a rotational regression model was
proposed to capture common skinning deformation such as mus-
cle bulging, twisting, and challenging regions such as the shoul-
ders [Wang et al. 2007]. Shi et al. [2007] propose to optimize
bone transformation and skin-weight with surface-detail-preserving
inverse-kinematics constraints during deformation. All these tech-
niques focus on the primary deformation of the surface mesh, but do
not address secondary deformation (i.e., small idiosyncracies or de-
tailed motions) despite its significant impact on realism [von Funck
et al. 2007]. Our method adds secondary deformation to skeleton-
driven animations generated by these techniques.

Volumetric deformable models can be incorporated with
skeleton-driven animations via first constructing (possibly coarse)
volumetric elements inside/around the surface mesh (using volu-
metric meshing algorithms, i.e., the red-green strategies [Molino
et al. 2003], variational tetrahedral meshing [Alliez et al. 2005],
etc.), then simulating continuum elasticity in the volume, and fi-
nally reconstructing the (finely detailed) surface mesh from the
volume elements through interpolation. Methods in this category
include (but are not limited to) physically-based approaches such
as the basic finite element method [Capell et al. 2002; Müller and
Gross 2004], modal analysis [Pentland and Williams 1989; Hauser
et al. 2003], mass-spring systems [Bourguignon and Cani 2000;
Teschner et al. 2004], and non-physical approaches such as Fast
Lattice Shape Matching [Rivers and James 2007]. Volumetric de-
formable models usually achieve high-quality simulation results,
at the cost of having to simulate all volumetric nodes during on-
line computation. Compared to existing volumetric approaches, the
advantages of our method include: (1) efficiency, as only surface
nodes are involved, a more finely detailed surface can be simulated
in real time; (2) compatibility with the existing skinning framework
and the traditional graphics hardware pipeline.

Surface-based deformable models drastically increase efficiency
by reducing the DoFs to only surface nodes. Our deformable model
falls into this category. ArtDefo [James and Pai 1999] introduced
the boundary element method for static linear elasticity into graph-
ics, and achieved through quasi-static simulation one of the earliest
interactive-rate elastic simulations. Precomputed multizone elas-
tokinematic models were introduced to simulate multibody kine-
matic systems which include elastostatic deformation [James and
Pai 2002b]. To extend to real dynamical simulation, DyRT [James
and Pai 2002a], based on modal analysis, discards all interior nodes
after the preprocessing stage and excites the low-frequency modes
by rigid body motions. Since the algorithm was implemented on
GPUs and the number of modes in use was limited by hardware,
very few (e.g., five) low-frequency modes were simulated, and thus
high frequency dynamics (e.g., the jiggling of fat tissues) was not
captured. Wilhelms [1995] modeled and animated animals using
simulated individual bones and muscles, soft tissues, and skin. Lar-
boulette et al. [2005] added local dynamic effects to classical an-

imations of characters by specifying flesh elements. The use of
muscles, soft tissues and flesh elements makes it hard to fit the
skinning framework. Von Funck et al. [2007] added elastic sec-
ondary deformation to a given primary deformation by the simula-
tion of a low number of user-placed mass-spring sets. To simulate
high-frequency dynamics realistically, many mass-spring sets need
to be placed and tuned, requiring extensive manual work. Bergou
et al. [2007] introduced an animation method that uses compu-
tational physics to generate fine motion details while constraining
the general motion to still follow a coarse (user-defined or precom-
puted) simulation. Their shell model is high resolution and can
produce excellent surface detail. Since full-blown physics equa-
tions are used to generate high-quality final results, it does not allow
interactive rates.

Parameter fitting algorithms learn model parameters from user-
provided examples. Mesh-based inverse kinematics can learn a
space of natural deformations from example meshes [Sumner et al.
2005]. Wang et al. propose learning from examples the parame-
ters of their rotational regression model [Wang et al. 2007]. These
methods fit parameters from static poses, while our fitting algo-
rithm learns the dynamical properties of materials from animation
sequences, rendering our task more challenging as the problem be-
comes highly non-linear. Bianchi et al. [2004] proposed simultane-
ous identification of the topology and stiffness of mass-spring mod-
els based on finite element method (FEM) reference deformations.
Our deformable model inherits the topology of the user-provided
surface mesh to best fit the traditional graphics hardware pipeline.
Bhat et al. [2003] estimated the parameters of a cloth simulation
from a video sequence of a real fabric. Our approach instead learns
parameters from a volumetric elastic material.

1.2 Our Contributions

We enhance purely geometric, skeleton-driven mesh animations
with physically-realistic secondary motions. As the coarse motion
we start from is generally not physical to begin with, we do not pur-
sue physical accuracy. To improve efficiency for interactive appli-
cations like video games, we use a surface-based deformable model
trained by volumetric models (or example sequences) to further re-
duce computational complexity. We can also extend our method to
incorporate better control of the low-frequency accuracy as we will
discuss briefly in the final section. Our main contributions include:

⋄ An interactive deformable model which is surface-based, yet ca-
pable of exhibiting natural volumetric behavior.

⋄ An iterative fitting algorithm that overcomes the high nonlinearity
of learning the (locally optimal) motion parameters.

⋄ A fully GPU-based implementation of the on-the-fly dynamic
skinning stage.

In Section 2, we present the surface-based deformable model whose
simulation is parallelizable. Section 3 introduces an iterative fitting
algorithm to automatically generate the parameters used in the de-
formable model. The on-the-fly GPU-based dynamic skinning is
briefly discussed in Section 4. Finally, we conclude with a discus-
sion of our results and possible extensions.

2 Deformable Model

To provide some background knowledge for our deformable model,
we give a brief overview of FEM-style linear elasticity simulation.
We list all the degrees of freedom in a single time-varying vector
x, seen as a point in a high-dimensional configuration space pa-
rameterized by a generalized coordinate system. The equations of
motion (Newton’s second law, or equivalently, the Euler-Lagrange



equations) for x(t) are differential equations describing the dynam-
ical behavior of the system:

Mẍ+Cẋ+K(x−x0) = fext , (1)

where M is the mass matrix, C is the damping coefficient matrix, K
is the stiffness matrix, x0 is the rest pose, and fext is the generalized
external force. Small displacements are usually assumed for linear
models to work, while simple generalizations to large deformation
through corotational frames exist, see e.g. [Müller and Gross 2004].

In our real-time deformable model, we simulate the deformable ob-
ject using an elastic thin shell supported by elastic spokes emanat-
ing from the bones in the skeleton. As we target secondary motions
caused by the primary motion, we add, on top of the elastic forces,
a restoration force to each vertex towards its position in the primary
motion x̂:

Mẍ−F(x,x0, ẋ, x̂) = fext , (2)

where F is the total internal force. This is the governing equation
we use for our surface-based model. Note that the volumetric elas-
tic force acting on surface nodes consists of two parts: those coming
from surface neighbors, and those coming from interior neighbors.
Since our model is surface-based, the degrees of freedom repre-
senting interior neighbors are not present. We detail how we ap-
proximate the elastic force from interior neighbors using spokes in
Section 2.1.

In FEM, the state of the object is usually evolved in time using
implicit integration when large time steps are used for improved
stability. We choose, instead, to use a simple, GPU-friendly explicit
time integration since we seek parallelism of the process instead of
high accuracy. Forces will be carefully implemented so that they do
not overshoot when our explicit integration scheme is applied.

We call the original surface mesh the rest pose, and the skeleton-
driven poses the goal poses (we employ SSD [Magnenat-Thalmann
et al. 1988] to generate goal poses in our paper). For the i-th vertex
the surface mesh, we denote its position in the rest pose by x0

i , its
position in goal poses (i.e., the goal positions) by x̂i(t), its dynamic
position by xi(t) and its velocity by vi(t), where t ∈ [0,T ] is time
and T is the duration of the animation. In the following sections,
we first elaborate on each of the simulation forces, then on time
integration.

2.1 Per-Vertex Forces

For each vertex of the mesh, four forces besides external force are
evaluated and applied at each frame of the animation. They are:
restoration force from goal position Gi(t), elastic force from sur-
face neighbors Li(t), volumetric elastic force Bi(t), and damping
Di(t) (see Figure 2). When summed up to get the total force, each
force is scaled by a factor denoting the strength of the force (e.g.,
neighborhood stiffness, strength of the spoke attaching that vertex
to the bone, etc.) which best approximates the desired volumetric
behavior. In other words, these factors are the material properties of
the surface mesh. We follow the common practice of mass lumping
in elasticity simulation. Thus, without loss of generality, we can
use the terms force and acceleration interchangeably, assuming the
mass associated to the node is taken into account.

Fi(Πi, t) = αiGi(t)+βiLi(t)+ γiBi(t)+λiDi(t)+Fext(t). (3)

These per-vertex parameters Π = {αi,βi,γi,λi}i∈vertices allow the
model to achieve different dynamical behaviors. The user may tune
the parameters via a painting or curve-based editing interface, or
use the fitting algorithm described in Section 3 to learn parameters
from example animations.

(a) (b)

Figure 2: (a) The dynamics of our model (green) is guided by the
skeleton and the goal pose (blue). (b) Per-vertex Forces: A vertex
(red dot) experiences four forces besides external force: restora-
tion force (purple arrow) to goal position (blue dot), elastic force
(red arrow) from surface neighbor (green umbrella), elastic force
(brown arrow) from bone (red segment) and damping force (not
drawn here).

Restoration Force from Goal Position Each vertex is pushed to-
wards its goal position so that the simulated mesh can achieve equi-
librium near the goal pose and converge if the goal pose stops mov-
ing.

Gi(t) =
x̂i(t)−xi(t)

h2
. (4)

This term follows the formulation of [Müller et al. 2005], as it is the
largest possible acceleration that does not produce overshoot over
one time step h. The next two terms are also treated in the same
fashion.

Elastic Force from Surface Neighbors In FEM, adjacent nodes
exert elastic forces on each other when the element between them
changes shape, inducing a locally non-zero strain tensor. We mimic
this effect by maintaining the surface details: the position which
best preserves the Laplacian coordinates is calculated, and the ver-
tex is moved towards this position.

More precisely, let us consider a single vertex i and its local neigh-
borhood nbr(i). First, the optimal rotation R from the rest pose
(of the neighborhood) to the current pose is calculated via a polar
decomposition of

A = ∑
j∈nbr(i)

(

x j(t)−xi(t)
)

(x0
j −x0

i )
T
. (5)

In terms of the singular value decomposition of A, A = UDV, one
has R = UV [Haralick et al. 1989]. Then, the position which best
preserves the Laplacian coordinates is calculated as

ci(t) =
1

|nbr(i)| ∑
j∈nbr(i)

(

R(x0
i −x0

j)+x j(t)
)

. (6)

Thus the surface detail preserving force is

Li(t) =
ci(t)−xi(t)

h2
. (7)

Here we choose the graph Laplacian over other forms of Laplacian
operators (e.g., cotangent form) mainly due to its simple uniform
weights, which means no extra texture storage or tex-read opera-
tions needed for GPU implementation. The same reasoning also
leads us to use the graph Laplacian in the damping term discussed
below.
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Figure 3: Volumetric Behavior. The bone (red) accelerates down-
ward, causing the rubber tube to deform. With the help of the spokes
(yellow in (c)), our model (a) exhibits volumetric behavior, in con-
trast to the result generated without spokes (b). In the illustration
(c), the D’Alembert force (cyan) resulting from the acceleration of
the bone and the elastic force from the bone (brown) together drive
the two vertices (blue) to accelerate in their respective directions
(green). Without the support from the bone, such volumetric behav-
ior would be hard to emulate.

Volumetric Elastic Force In FEM, surface vertices experience
elastic forces not only from surface neighbors, but also from the
inside of the material. Since we reduce our model to be purely
boundary-based for efficiency, the positions and momenta usually
stored at interior vertices are unavailable. It is impossible in theory
to use only a thin shell model to simulate volumetric elasticity with
full accuracy. However, for models with a skeleton, we observe that
visually one of the most important volumetric behaviors not already
captured by the restoration force to goal positions is the tendency
to restore the distance between the boundary vertex and the bone
supporting it. Modeling this behavior alone obviously omits the
subtle interaction between boundary vertices and interior vertices,
and the interaction between nonadjacent boundary vertices through
internal elements. However, these detailed effects are not compat-
ible with interactive-rate requirements. Nevertheless, it is conceiv-
able to extend our basic model to include a proper treatment of the
low-frequency modes if the application requires so. We delay the
discussion of this extension to Section 6.

For the sake of performance, we take a simplistic model where the
surface vertices are linked directly to the bones by pseudo-springs
that can slide along the bones. (Adding a stick of specific mass
and moment of inertia would be more desirable, but we choose to
use this simple model since the restoration force to goal position
has partially taken the other volumetric effects into account, and in
practice it serves its purpose well.) During the simulation, a force
along the spoke tries to maintain the length of the spring through
the following term:

Bi(t) =

(

|x0
ib|/|xib(t)|−1

)

xib(t)

h2
, (8)

where xib is the difference between a vertex and its projection on the
bone. For joint regions, a surface vertex is linked to several bones.
In this case, the forces from each bone are averaged using the usual
skin weights. With this term, our model is capable of reproducing
the visually important part of the volumetric behavior, i.e., it can
mimic the resistance to local volume change (see Figure 3).

Damping With the commonly used Rayleigh damping, a vertex
experiences resistance when its velocity differs from its neighbors.
To approximate the effect of such damping forces, the velocity of
a vertex is smoothed based on its 1-ring neighbors, again using the

graph Laplacian:

Di(t) =
1

h |nbr(i)| ∑
j∈nbr(i)

v j(t)−vi(t). (9)

Ranges of the Parameters To simulate different material proper-
ties, the terms above are scaled by corresponding parameters before
being employed in the dynamics described in the next section (see
Figure 4). Since we normalized the largest possible forces without
causing instability to be 1 (the parameters actually correspond to
F/m instead of F), the natural limits to these parameters are [0,1],
with the exception of λ which should be within [0,0.5] to ensure
the stability of the system.

2.2 Dynamical Simulation

The dynamical simulation of our model is straightforward. A sym-
plectic Euler integration scheme similar to [Müller et al. 2005] is
used for its simplicity and efficiency. At each time step, the velocity
of the vertices are first updated explicitly based on the above terms,
then the positions are updated explicitly using the latest velocity:

vi(t +h) = vi(t)+hFi(Π, t), (10)

xi(t +h) = xi(t)+hvi(t +h). (11)

3 Iterative Fitting Algorithm

The model we described above contains four parameters for each
vertex. Although manual tuning via painting or a spline-based edit-
ing interface can be applied, the user may have already obtained
satisfactory examples for the behavior of the given mesh. Thus we
propose an iterative fitting algorithm to learn the material properties
directly from example animations.

The input of the fitting algorithm includes a surface mesh with a
skeleton structure, and two skeleton-driven animations - one with
physical details (the example pose) and one without (the goal pose).
The fitting process optimizes the set of per-vertex parameters Π so
that when driven by the goal pose, the surface mesh follows the
example pose as closely as possible:

Π = argmin
Π

E(Π). (12)

We measure the similarity of the two animations by the difference
between the positions of vertices computed as:

E(Π) = ∑
t

∑
i

‖xi(t)−pi(t)‖
2, (13)

where pi(t) is the position of the i-th vertex in the example ani-
mation (assuming regular time steps). The above measure can also

Figure 4: Armadillo’s skeleton and an example of the four per-
vertex parameters. Blue and red correspond to 0 and 1, respec-
tively.



be weighted to adapt to irregularly sampled meshes, or to stress
certain segments containing particularly desirable behaviors in the
sequences.

Given such a non-linear optimization problem, gradient descent or
Newton’s method [Avriel 2003] could be applied. However, such
algorithms require the gradient (and possibly the Hessian) of the
function to be evaluated at each iteration, which is both costly
and difficult to compute even with the adjoint method [McNamara
et al. 2004] (as the adjoint matrices involve taking derivatives of the
forces based on positions of the neighbors and the polar decompo-
sition).

We propose instead a customized iterative optimization procedure.
Suppose we have an initialization of the parameters Π0. Let us
assume we are now in the k-th iteration (k ≥ 0) and we already

have the parameters Πk. The simulated sequence can be constructed

according to Πk and the dynamics. Denote its position and velocity

by xk
i (t) and vk

i (t) respectively. We obtain the parameters of the

next iteration Πk+1 via:

Πk+1 = argmin
Π

Ek(Π)

s.t. α ,β ,γ ∈ [0,1] and λ ∈ [0,0.5],
(14)

where the evaluation of Ek(Π) will be explained below. After Πk+1

is solved, the algorithm advances to the (k + 1)-th iteration, and

the dynamics is simulated again using Πk+1 to obtain the sequence

xk+1
i (t) and vk+1

i (t). The above iterative procedure loops until con-
vergence.

We evaluate Ek(Π) in Eq. (14) by expanding Eq. (13) using Eq.
(10) and (11):

Ek(Π) = ∑
t

∑
i

‖xi(t +h)−pi(t +h)‖2

= ∑
t

∑
i

∥

∥

∥
xk

i (t)+hvk
i (t)+h2Fk

i (Πi, t)−pi(t +h)
∥

∥

∥

2
,

(15)

where Fk
i (Πi, t) is the force term generated using xk

i (t), vk
i (t) and Π.

Inspired by the expectation-maximization (EM) algorithm [Demp-
ster et al. 1977], we consider all positions and velocities constant in
the above equation (basically to treat each step of the motion as a

separate short sequence). Consequently Ek depends only on F, thus

Ek can be regarded as a function of variable Π only.

Further, notice that the terms involving the parameters of any in-
dividual vertex use only its neighbors’ positions and velocities
(which are considered constant). The energy minimization prob-
lem, Eq. (14), can thus be split into a per-vertex quadratic program-
ming (QP) problem, which can be solved efficiently:

Πk+1
i =argmin

Πi

∑
t

∥

∥

∥
xk

i (t)+hvk
i (t)+h2Fk

i (Πi, t)−pi(t +h)
∥

∥

∥

2

s.t. αi,βi,γi ∈ [0,1] and λi ∈ [0,0.5].
(16)

We point out here that we have no formal proof of global conver-
gence, as we designed this scheme for our specific problem. How-
ever, our numerical tests always converged to a same local mini-
mum from all the initial conditions we tried. An example of the
fitted parameters is shown in Figure 4. Note that even if the physi-
cal material is uniform, the surface-based parameters learned from
volumetric material can still be non-uniform. An important issue

is that the parameter values of consecutive iterations (say, Πk and

Πk+1) might differ greatly. Direct update of the value of Π from

k = 0
repeat

// SIMULATE THE SEQUENCE

Simulate the dynamics using Πk to get xk
i (t) and vk

i (t)

// PERFORM ONE STEP OF THE OPTIMIZATION

for i = 1 to N do
// For each vertex
Solve Eq. (16) via QP, and obtain Πk+1

i

// ADVANCE TO THE NEXT ITERATION

Πk+1 = (1−µ)Πk + µΠk+1

k = k +1
until |Ek −Ek−1|/E0 < ε

Figure 5: Pseudocode of our fitting algorithm.

Πk to Πk+1 may cause the optimization process to diverge. In order
to make the process more stable, a step-ratio coefficient µ can be
defined so that whenever the value of a new iteration is calculated,
the actual solution is moved only partially towards the new value.

Implementation Details From our numerical tests, a step-ratio
µ within the range of [1/T,0.1] is usually sufficient for stability,
where T > 10 is the duration of the given sequences.

Having no prior knowledge of the optimal solution, we use α =
1,β = γ = λ = 0 as an educated guess for the initial values of all
vertices. The initial sequence thus follows the goal poses, which is
reasonable because the goal poses match the example poses up to
secondary deformations.

Discussion In the definition of the distance between two se-
quences, it is plausible to include the difference between the veloc-
ities of the two animations. This corresponds to a Sobolev norm,
with the two sequences regarded as two functions in time. In our
tests, this norm only provided negligible improvement.

From Eq. (10) and (11), we can see that xi(t + h) depends recur-
sively on xi(t), and each recursion involves increasing the orders
of the terms containing Π by one (actually, nonlinear dependence
on Π is also involved). Thus, xi(t + h) is more complicated than
a high degree polynomial of Π. This is why we resort to sequen-
tial quadratic programming, so that each step can be dealt with as
a linear problem. Another benefit is that our algorithm is easy to
implement, since the calculation of the gradient is avoided.

4 Dynamic Skinning on GPUs

After the per-vertex parameters are obtained, we are ready to simu-
late the additional physically-based secondary motion on any given
skeleton-driven animation. The algorithm is implemented as an
additional pass in the graphics pipeline before the rendering pass.
Indexed matrix palette skinning [Lindholm et al. 2001] is imple-
mented in this pass. Instead of rendering the vertices, we use them
as the goal pose. After the calculation of our algorithm, a typical
rendering pass is invoked to render the mesh onto the screen.

Our GPU implementation of the above algorithm uses the NVIDIA
CUDA framework [NVIDIA 2007]. CUDA provides a general-
purpose C language interface for GPU programming, in which the
algorithm is straightforwardly implemented in one CUDA kernel.
All our data are organized as linear lists, and stored in CUDA global
memory. Skeleton and one-ring neighborhood information are ac-
cessed via linear texture fetches while other per-vertex data are di-
rectly accessed using global memory operations.



model # vertices # bones frame time

Toy 494 3 0.50ms
Tube 4430 2 0.57ms

Armadillo 6969 24 0.67ms
Armadillo 25001 19 1.64ms

Table 1: Performance statistics, including size of the meshes and
the time spent per frame for the calculation of secondary motion.
All timings were measured on a 3.7GHz Intel Xeon workstation with
3GB RAM and an nVidia GeForce 8800GTX graphics card.

The implementation described above can simulate dynamics with
great efficiency. In our test, a mesh with 25001 vertices can be sim-
ulated at the speed of 610 frames-per-second. This means that we
can add secondary deformation to animations and interactive ap-
plications with negligible additional time. See Table 1 for detailed
statistics.

Discussion The implementation would be even faster if the per-
vertex polar decomposition were omitted and the rotation calculated
from the bone matrices. Considering that the implementation with
polar decomposition is already faster than real-time on moderately
large meshes, we never resorted to this approximation.

5 Applications and Results

A direct application of our approach is enriching skeleton-driven
animations with secondary effects. In the accompanying video, the
Armadillo model was trained using a “jump” animation simulated
with non-uniform material. Note that the vertex parameters (see
Figure 4) reflect the non-uniform material of the example model.
After the model is trained, it is applied to another “run-and-jump”
animation, and generates plausible results (see Figure 1). It also
suggests that a simple animation like “jump” is enough to properly
train our model.

Our per-vertex model can express high-frequency deformations,
both in animation and user interaction (see Figure 6). On the con-
trary, DyRT [James and Pai 2002a] simulates only low-frequency
modes obtained via modal analysis, thus high-frequency vibra-
tions are not present. The reason for DyRT not using more high-
frequency modes is that the number of modes in use is limited by
graphics hardware. In our model, a fixed number of textures is used,
and thus we do not suffer from this issue. With the help of spokes,
our model can exhibit volumetric behavior (see Figure 3). We also
show in the video that the per-vertex parameters do emulate intrin-
sic material properties well. The parameters of the bar model used
are fitted to the physical simulations of the elastic bar induced by
three different rigid motions of a bone segment (translation, axial
rotation and lateral rotation), and the resulting model reproduces
the sequences quite well. Figure 1 shows that fitted models can
also be re-used on other animations and produce desirable results.

In our tests, the traditional SSD [Magnenat-Thalmann et al. 1988]
is employed to generate goal poses. Interactive Virtual Material
[Müller and Gross 2004] is used to generate example animation
sequences.

Dynamic Skinning in Interactive Environments Our algorithm
can enhance various interactive experiences. In interactive manipu-
lation algorithms such as Mesh Puppetry [Shi et al. 2007], the user
manipulates a mesh, and its skeleton deforms accordingly. Our al-
gorithm can then add secondary deformation to the mesh according
to the deformation of both the mesh and the skeleton in real time.

In computer games, characters may not only be manipulated di-

(c) (d)

(a) (b)

Figure 6: Our per-vertex model can express high-frequency vibra-
tions. When driven by a skeleton animation, our model is capable of
generating wrinkles (a), while DyRT only generates low-frequency
deformation (b). When dragged by the user, a soft material deforms
locally using our model (c), while it deforms globally using DyRT
(d), as low temporal frequencies are generally associated to low
spatial frequencies. Here for DyRT, 15 modes are used in (b), and
5 in (d).

rectly through user interaction (e.g., change of gaze direction by
mouse click), but also can be partially influenced by the virtual en-
vironment as an indirect result of user interaction (e.g., being hit by
a ball with random momentum at an unpredictable contact position
during a dodgeball game). Various articulated rigid body simulation
algorithms [Hadap and Kokkevis 2005] can be used to simulate the
primary motion of the character, while our algorithm supplements
it with secondary deformation to enhance realism, thus improving
the resulting gaming experience.

Limitations Since we aim to enrich skeleton-driven animations
and base our formulation on the existence of a skeleton, our ap-
proach can obviously not be applied to arbitrary mesh sequences.
Even for skeleton-based animations, our approach will most of-
ten not precisely reproduce example animations. Additionally, our
approach can lead to issues due to explicit integration when ap-
plied to very stiff objects. In such a case, a damping term to abso-
lute velocity can be applied and be trained as another parameter.
Our fitting algorithm also inherits the limitation of all example-
based approaches. However, in our tests, a simple sequence like
the “jump” animation provides enough material information to re-
produce the desired high-frequency effects. Finally, overfitting can
occur during the fitting procedure. Additional techniques such as
cross-validation can be applied to circumvent this issue.

6 Conclusion and Future Work

We have presented a novel example-based approach to motion de-
tail enrichment in real time. A surface-based deformable model that
can interactively emulate both low- and high-frequency volumetric
dynamical effects is introduced. To generate the set of per-vertex
parameters used in our model, an iterative fitting algorithm is pro-
posed to handle the high nonlinearity of the optimization problem.
The simplicity and parallelism of our model lead naturally to a fully
GPU-based implementation that runs in real time on moderately
large meshes. The direct applications include adding secondary de-
formation to existing animation sequences, as well as to animated
characters in interactive environments such as video games.

For future work, we first wish to test our model on secondary ef-
fects captured by recent motion capture methods (e.g., [Sand et al.



2003; Park and Hodgins 2006]). More realistic results could likely
be achieved if our model were able to match such motion captured
skin data. In addition, it would be beneficial to find a better mea-
surement of motion errors and to compress the parameter space of
our model under the assumption that the physical material varies
smoothly over the volume (in the current model, we learn per-vertex
parameters and make no assumptions about the smoothness of the
physical material). We also plan to explore the possibility of replac-
ing spokes with more elaborate models. For example, in the realm
of linear elasticity, the mesh can be divided into parts and multi-
zone elastokinematic models may be simulated using precomputed
Green’s functions according to skeleton motion, as done in [James
and Pai 2002b]. To improve the accuracy of the low frequency mo-
tion, we can incorporate the low-frequency modes of DyRT into
x̂. Furthermore, forces due to deviation from the goal position
can be used to change the excitation level of the low-frequency
modes through projection onto the chosen modes to provide better
coupling between low- and high-frequency components—offering
more physical accuracy while retaining the interactive rates, and
providing more options to enhance visual appearance when suffi-
cient computational power is available.
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1988. Joint-dependent local deformations for hand animation and ob-

ject grasping. In Proceedings of GI’88, 26–33.

MCNAMARA, A., TREUILLE, A., POPOVIĆ, Z., AND STAM, J. 2004.
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