
Real-Time Smoke Rendering Using Compensated Ray Marching

Kun Zhou∗ Zhong Ren∗ Stephen Lin∗ Hujun Bao† Baining Guo∗ Heung-Yeung Shum∗

∗Microsoft Research Asia †State Key Lab of CAD&CG, Zhejiang University

Abstract

We present a real-time algorithm called compensated ray march-
ing for rendering of smoke under dynamic low-frequency environ-
ment lighting. Our approach is based on a decomposition of the
input smoke animation, represented as a sequence of volumetric
density fields, into a set of radial basis functions (RBFs) and a se-
quence of residual fields. To expedite rendering, the source radi-
ance distribution within the smoke is computed from only the low-
frequency RBF approximation of the density fields, since the high-
frequency residuals have little impact on global illumination under
low-frequency environment lighting. Furthermore, in computing
source radiances the contributions from single and multiple scatter-
ing are evaluated at only the RBF centers and then approximated
at other points in the volume using an RBF-based interpolation. A
slice-based integration of these source radiances along each view
ray is then performed to render the final image. The high-frequency
residual fields, which are a critical component in the local appear-
ance of smoke, are compensated back into the radiance integral dur-
ing this ray march to generate images of high detail.

The runtime algorithm, which includes both light transfer simula-
tion and ray marching, can be easily implemented on the GPU, and
thus allows for real-time manipulation of viewpoint and lighting,
as well as interactive editing of smoke attributes such as extinction
cross section, scattering albedo, and phase function. Only moderate
preprocessing time and storage is needed. This approach provides
the first method for real-time smoke rendering that includes sin-
gle and multiple scattering while generating results comparable in
quality to offline algorithms like ray tracing.

Keywords: participating media, environment lighting, single scat-
tering, multiple scattering, perfect hashing

1 Introduction

Rendering of smoke presents a challenging problem in computer
graphics because of its complicated effects on light propagation.
Within a smoke volume, light undergoes absorption and scattering
interactions that vary from point to point because of the spatial non-
uniformity of smoke. In static participating media, the number and
complexity of scattering interactions lead to a substantial expense
in computation. For a dynamic medium like smoke, whose intricate
volumetric structure changes with time, the computational costs can
be prohibitive.

Despite the practical difficulties of smoke rendering, it nevertheless
remains a popular element in many applications such as films and
games. To achieve the desired visual effects of smoke, a designer

Figure 1: Real-time rendering of smoke under dynamic environ-
ment lighting. The appearance of a smoke volume can change sig-
nificantly with respect to illumination.

should be afforded real-time control over the lighting environment
and vantage point, as well as the volumetric distribution and optical
properties of the smoke.

In this work, we present a real-time algorithm called compen-
sated ray marching for rendering smoke animations with dynamic
low-frequency environment lighting and controllable smoke at-
tributes. As in most multiple scattering techniques (e.g., [Kajiya
and von Herzen 1984]), our runtime algorithm first simulates light
transfers to compute the source radiances inside the volume, then
integrates the radiance contributions in a ray march along each view
ray. To facilitate this process, we propose a technique based on a
decomposition of the smoke volume into a low-frequency approxi-
mation and a residual field. In the low-frequency approximation,
the smoke volume is modeled by a set of radial basis functions
(RBFs). Source radiances throughout the volume can be rapidly
computed with this RBF model by directly evaluating the radiances
at only the RBF centers and then approximating the radiances at
other points using an RBF-based interpolation. For fast computa-
tion of radiances at RBF centers, we aggregate the optical depths
due to each RBF, and then employ an adaptation of the spherical
harmonic exponentiation (SHEXP) technique [Ren et al. 2006] to
evaluate single scattering and initialize an iterative diffusion equa-
tion solver for multiple scattering. Since evaluation of source radi-
ances comprises the bulk of computation in a participating media
simulation, this low-frequency approximation of the smoke den-
sity field and source radiances leads to a considerable speedup in
rendering. Furthermore, this speedup comes at only a minor loss
in accuracy, since the high-frequency residuals of the density field
have little effect on the global distribution of source radiances for
smoke viewed under low-frequency environment lighting.

The appearance of fine-scale smoke details such as vortices, how-
ever, depends heavily on the high-frequency density components
contained in the residuals. To incorporate these smoke details in
an efficient manner, we compensate for the residuals by accounting
for their extinction effects (or enlightenment effects for negative
residuals) in the radiance integration along each view ray. Since
residual fields have significant values only at sparse locations, we
take advantage of the perfect spatial hashing technique [Lefebvre
and Hoppe 2006] to substantially compress and rapidly reconstruct
this data.

The runtime algorithm, which includes both light transfer simula-
tion and ray marching, can be easily implemented on the GPU, and



thus provides users real-time feedback for changes in viewpoint,
lighting, and smoke attributes such as extinction cross section, scat-
tering albedo, and phase function. With practical amounts of pre-
processing time and storage, this approach offers the first method
for real-time rendering of smoke with fidelity comparable to off-
line algorithms like ray tracing, as shown in Fig. 6, Fig. 12 and the
supplemental video. With this technique, interactive modifications
of scattering properties become feasible not only for animated se-
quences of smoke, but also of other non-emissive media such as
mist, steam, and dust.

2 Related Work

Extensive research has been done on realistic simulation of par-
ticipating media [Cerezo et al. 2005]. While impressive renderings
have been generated for static scenes with previous techniques, they
do not offer a way to render animated sequences in real time. Here,
we limit our discussion to a small number of representative methods
for efficient simulation.

Analytic Methods Blinn [1982] introduced an analytic technique
for rendering single scattering in homogeneous media with low
scattering albedo and an infinitely distant light source. For lighting
that resides within a homogeneous medium, Narasimhan and Na-
yar [2003] proposed a multiple scattering model for optically thick
media, and [Biri et al. 2004; Sun et al. 2005] presented single scat-
tering formulas that can be evaluated in real time on programmable
graphics hardware. Zhou et al. [2007] introduced an analytic model
for rendering single scattering in smooth, optically thin, inhomoge-
neous media which is modeled using radial basis functions. Due to
its inhomogeneity, fine-scale details and significant multiple scat-
tering of light, smoke is not well-suited for analytic formulation.

Stochastic Methods Another approach is to approximate the over-
all scattering behavior using only a small number of random sam-
ples, rather than evaluate the numerous samples of a full partic-
ipating media simulation. High quality global illumination effects
have been produced with Monte Carlo path tracing methods [Lafor-
tune and Willems 1996]. Stam [1994] introduced randomness by
incorporating stochastic intensity perturbations according to statis-
tics computed from the density field and an illumination model.
Methods based on volume photon maps [Jensen and Christensen
1998] trace a relatively small number of rays, and estimate source
radiance at a point by querying the volume photon map. Jarosz et
al. [2007] proposed a method to cache radiance at sparse locations
and interpolate using gradients of the radiative transport equation.
While these strategies for sampling reduction can significantly de-
crease computation, considerable simulation time is still needed to
render a single image, making this approach unsuitable for interac-
tive applications on animated sequences.

Numerical Simulations In contrast to stochastic methods, many
techniques compute the radiance transport integral in a determin-
istic manner. Kajiya and von Herzen [1984] computed the source
radiance of voxels in a spherical harmonics (SH) basis whose co-
efficients are computed from a system of partial differential equa-
tions (PDEs), and then integrated these radiances along view rays.
Rushmeier [1987; 1988] presented zonal finite element methods
for isotropic scattering in participating media. Stam [1995] intro-
duced diffusion theory to compute energy transport in the medium
using either a multi-grid scheme or a finite-element blob method.
Detailed smoke shape in an evolving smoke volume can be ac-
counted for using blob warping [Stam and Fiume 1995]. Geist et
al. [2004] also computed multiple scattering as a diffusion process,
using a lattice-Boltzmann method as a PDE system solver. These
approaches to radiance transport simulation, while faster than con-
ventional path tracing, nevertheless require offline computation.

Simplified volume representations have also been used towards ob-
taining high performance. Dobashi et al. [2000] represented clouds
as a set of metaballs, for which isotropic single scattering is com-
puted at their centers, and then their radiance contributions are com-
posited by a billboard-based blending. For smoke, we utilize an
RBF representation of the volume density to facilitate computation
of source radiances, including both single and multiple scattering.
Moreover, the RBF model is used in conjunction with model residu-
als in the ray march to obtain real-time rendering results with high-
frequency smoke details. While the method in [Dobashi et al. 2000]
handles only directional lighting, ours addresses complex environ-
ment illumination.

Volume rendering has long been applied in rendering gaseous phe-
nomena [Ebert and Parent 1990], and hardware accelerated tech-
niques have been proposed to render single scattering [Kniss et al.
2003] or multiple scattering [Kniss et al. 2003; Riley et al. 2004]
in participating media at interactive frame rates. Targeting specific
phenomena such as sky or clouds, Riley et al. [2004] tabulated the
multiple scattering angular distribution function. In contrast, we
wish to enable changes in extinction, scattering albedo and even
phase function at runtime, making such tabulation impossible.

Precomputation Techniques Efficient rendering of participating
media can also be achieved through precomputation of various
scene-dependent quantities [Harris and Lastra 2001; Sloan et al.
2002; Premoze et al. 2004; Hegeman et al. 2005; Szirmay-Kalos
et al. 2005]. In all of these methods, the precomputed quanti-
ties are valid only for the given static participating medium. For
dynamic smoke sequences with adjustable smoke parameters, the
preprocessing time and storage costs would be prohibitive. Our
method also needs a preprocess to decompose the smoke density
into a set of RBFs and a residual. However, such decomposition
can be done in moderate time and is independent of lighting and
smoke attributes such as scattering albedo and phase function.

Ren et al. [2006] presented a GPU-based algorithm to render soft
shadows in dynamic scenes with low-frequency environment light-
ing. Blocker geometries are approximated by sets of spheres, whose
spherical harmonic (SH) visibility is accumulated in log space and
exponentiated by SHEXP to obtain the final visibility SH vector.
We present a framework for real-time rendering of smoke that takes
advantage of the SHEXP technique for rapid evaluation of transmit-
tance vectors in our single scattering computation.

3 Light Transport in Scattering Media

In our work, we represent lighting as a low-frequency environment
map Lin, described by a vector of spherical harmonic coefficients
Lin. The input smoke animation is modeled as a sequence of vol-
umetric density fields. We denote the smoke density at each frame
as D(x), the extinction cross section of the smoke as σt, the scat-
tering cross section as σs, and the single-scattering albedo as Ω. In
the following, we briefly review light transport in scattering media.
The radiance quantities that we use are listed in Table 1 and are
defined as in [Cerezo et al. 2005].

Fig. 2 illustrates the transport of light through smoke. The radiance
at a point x along direction ωo is composed of reduced incident
radiance Ld and media radiance Lm:

Lout(x, ωo) = Ld(x, ωo) + Lm(x, ωo).

Reduced incident radiance describes source illumination Lin that
arrives directly at x along direction ωo with some attenuation by
the medium:

Ld(x, ωo) = τ∞(x, ωo)Lin(ωo), (1)



x u

τ(u,x)

τ∞(x,ωo)

Lin(ωo)J(u,ωo)

Smoke

Lin

Ld(x,ωi)

Lm(x,ωi)
Lout(x,ωo)

xωo

Figure 2: Light transport in smoke.

where τ∞(x, ωo) is the transmittance from infinity to x along di-
rection ωo, computed as exp(−

∫

∞ω

x
σtD(v)dv).

On the other hand, media radiance Lm consists of light that has
scattered at least once in the medium before arriving at x along
direction ωo. It is computed by integrating radiance contributions
along the corresponding view ray:

Lm(x, ωo) =

∫ x

xωo

τ(u, x)σtD(u)J(u, ωo)du, (2)

where source radiance J(u, ωo) represents light that scatters at a
point u toward direction ωo. In non-emissive media such as smoke,
this source radiance is composed of a single scattering Jss and a
multiple scattering Jms component:

J(u, ωo) = Jss(u, ωo) + Jms(u, ωo).

The single scattering term, Jss, represents reduced incident radi-
ance whose first scattering interaction in the medium occurs at u:

Jss(u, ωo) =
Ω

4π

∫

S

Ld(u, ωi)p(ωo, ωi)dωi, (3)

where the phase function p(ωo, ωi) describes the directional scat-
tering distribution of the smoke. In computer graphics, the phase
function is often assumed to be symmetric about the incident direc-
tion, and can be parameterized by the angle between the incident
and outgoing direction as p(ωo ·ωi). The first moment of the phase

function µ̄ = 3/2
∫ 1

−1
µp(µ)dµ provides a simple measure of a

medium’s anisotropy. With this first moment, we define the trans-
port cross section σtr as (1 − Ωµ̄/3)σt.

The multiple scattering term, Jms, accounts for scattering of media
radiance:

Jms(u, ωo) =
Ω

4π

∫

S

Lm(u, ωi)p(ωo, ωi)dωi. (4)

In an optically thick medium, media radiance which has under-
gone multiple scattering can be approximated by a diffusion pro-
cess [Stam 1995]. Expressing the media radiance by a two-term
Taylor expansion gives us

Lm(x, ω) = L0
m(x) + L

1
m(x) · ω,

where L0
m(x) = 1

4π

∫

S
Lm(x, ω)dω is the average radiance over

all angles, and L1
m(x) = 3

4π

∫

S
Lm(x, ω)ωdω is the principal di-

rectional component.

The average radiance L0
m(x) is determined by a diffusion equation:

∇κ(x)·∇L0
m(x)+κ(x)∇2L0

m(x)−α(x)L0
m(x)+S(x) = 0, (5)

x A 3D point
s, ω Direction
xω A point where light enters the medium

along direction ω
ωi, ωo Incident, outgoing radiance direction
S Sphere of directions
D(x) Smoke density

D̃(x) RBF approximation of smoke density
R(x) Residual of smoke density
σt Extinction cross section
σs Scattering cross section
Ω Single-scattering albedo, computed as σs/σt

κt(x) Extinction coefficient, computed as σtD(x)
τ(u, x) Transmittance from u to x,

computed as exp(−
∫ x

u
κt(v)dv)

τ∞(x, ω) Transmittance from infinity to x from

direction ω, computed as exp(−
∫

∞ω

x
κt(v)dv)

Lin(ω) Environment map
Lout(x, ω) Outgoing radiance
Ld(x, ω) Reduced incident radiance
Lm(x, ω) Media radiance
J(x, ω) Source radiance
p(ωo, ωi) Phase function (normalized)
y(s) Set of SH basis functions
yi(s), ym

l (s) SH basis function

f̃(s) Projection of f(s) on the SH basis
fi, fm

l Spherical harmonic coefficient vector

Table 1: Notation

where the following shorthand notations have been used:

κ(x) = (3σtrD(x))−1 ,
α(x) = (σt − σs)D(x),
S(x) = σt

Ω
D(x)J0

ss(x) − σt

σtr
∇ · J1

ss(x).

J0
ss, J1

ss are the first two terms of the Taylor expansion of single
scattering source radiance Jss(x, ω).

The directional component L1
m(x) can be expressed in terms of

L0
m(x) as

L
1
m(x) = κ(x)(−∇L0

m(x) + σtD(x)J1
ss(x)). (6)

4 Algorithm Overview

In our algorithm, we utilize a basic assumption of low-frequency
environment lighting. Based on this lighting condition, we can rea-
sonably assume that source radiance varies smoothly in the smoke
volume, so that its angular variation can be approximated by low
order spherical harmonics and that its spatial variation can be well-
modeled by a relatively small number (300 ∼ 1200) of radial basis
functions. We also assume the medium to be optically thick, so
that multiple scattering can be approximated by a diffusion process
[Stam 1995].

Our approach consists of a preprocessing step and a runtime ren-
dering algorithm.

Preprocessing As shown in Fig. 3, the density field D is decom-
posed into a weighted sum of RBFs Bℓ and a residual R:

D(x) = D̃(x) + R(x) =
∑

ℓ

wℓBℓ(x) + R(x).

Each RBF Bℓ is defined by its center cℓ and radius rℓ:

Bℓ(x) = G(‖x − cℓ‖, rℓ) = exp
(

− (‖x − cℓ‖/rℓ)
2) .



(a) original data (b) RBF approx. (c) residual (16×)

Figure 3: Density field approximation. (a) Original volume density

D; (b) RBF approximation D̃; (c) residual field R, scaled by 16
for better viewing. Red indicates positive residuals, and blue is
negative.

In our implementation, we limit the kernel support to a radius of
3rℓ, which reduces both preprocessing and runtime computation.

With this decomposition of the density field, we use the low-
frequency RBF representation to efficiently compute global illu-
mination within the medium, and account for the high-frequency
residual in rendering local appearance details. The decomposition
is computed for the entire animation sequence, as will be discussed
in Sec. 5.1. An analysis on rendering quality with respect to the
number of RBFs will be presented in Sec. 6.

Due to its size, an original density field D cannot in general be ef-
fectively processed on the GPU. However, this decomposition into

a low-frequency RBF approximation D̃ and a residual field R leads
to a considerable reduction in data size. Further memory savings
can be obtained by taking advantage of the relatively small num-
ber of significant values that typically exists in a residual field. To
promote compression, we obtain a sparse residual field by quan-
tizing the residual values. This sparse residual, we observe, can
be highly compressed using perfect spatial hashing [Lefebvre and
Hoppe 2006], as will be discussed in Sec. 5.2. In addition to pro-
viding manageable storage costs, perfect spatial hashing offers fast
reconstruction of the residual at runtime.

Runtime In a participating media simulation, the computational
expense lies mainly in the evaluation of source radiances J from
the density field D. To expedite this process, we compute a low-

frequency approximation J̃ of the source radiances from the low-

frequency RBF model D̃ of the density field. Specifically, we com-

pute J̃ due to single and multiple scattering at only the RBF centers:

J̃(cℓ, ωo) = J̃ss(cℓ, ωo) + J̃ms(cℓ, ωo).

The source radiance at any point x in the medium is then approx-
imated as a weighted combination of the source radiances at these
centers:

J(x, ωo) ≈ J̃(x, ωo) =
1

D̃(x)

∑

ℓ

wℓBℓ(x)J̃(cℓ, ωo). (7)

This low-frequency representation of source radiances can be
rapidly computed and provides a reasonable approximation with
low-frequency environment illumination. An example of single
scattering and multiple scattering source radiances in a smoke vol-
ume is illustrated in Fig. 4 (a) and (b). Details of the source radiance
computation will be presented in Sec. 5.3 and 5.4.

After computing source radiances, we obtain the media radiance
Lm(x, ωo) by performing a ray march that gathers radiance contri-
butions towards the viewpoint. These radiance contributions con-

sist of a component L̃m computed from the approximated source

radiances J̃ and the RBF density model, and a component C̃m that

(a) single scattering (b) multi. scattering (c) comp. ray march.

Figure 4: Source radiance components and compensated ray
marching result. The smoke is illuminated with the KITCHEN en-
vironment map, shown as insets at the upper-right. The density
ranges from 0.0 to 1.1, σt = 3.03, Ω = 0.73, and the smoke vol-
ume is a cube of about 3.5 meters in length.

compensates for the density field residual:

Lm(x, ωo) ≈ L̃m(x, ωo) + C̃m(x, ωo)

=
∑N

j=1 τ̃(xj , x)σtD̃(xj)J̃(xj , ωo) +
∑N

j=1 τ̃(xj , x)σtR(xj)J̃(xj , ωo),

(8)

where τ̃ denotes transmittance values computed from D̃, and xj in-
dexes a set of N uniformly distributed points between xωo

and x.

The compensation term C̃m brings into the ray march the extinc-
tion or enlightenment effects of the density residuals, as shown in
Fig. 4 (c). By incorporating high-frequency smoke details in this
manner, high-quality smoke renderings can be generated. In con-
trast to the work of Schpok et al. [2003] which adds procedural
3D noise to enrich coarse lighting in generated clouds, the high-
frequency residuals used in our compensated ray march represent
true smoke features, whose fine distinctive details and motion are
difficult to convincingly approximate with noise animation.

In this formulation, we obtain real-time performance with high vi-
sual fidelity by accounting for the residual field only where it has a
direct impact on Eq. (8), namely, in the smoke density values. For
these smoke densities, the residual can be efficiently retrieved from
the hash table using perfect spatial hashing. In the other factors
of Eq. (8), the residual has only an indirect effect and also can-
not be rapidly accounted for. We therefore exclude the residuals
from computations of source radiances and transmittances to signif-
icantly speed up processing without causing significant degradation
of smoke appearance, as will be shown in Sec. 5.

5 Algorithm Components

5.1 Density Field Approximation

For a specified number n of RBFs, we compute an optimal approx-
imation of the smoke density field by solving the following mini-
mization problem:

min
cℓ,rℓ,wℓ





∑

j,k,m

[

D(xjkm) −

n
∑

ℓ=1

wℓBℓ(xjkm)

]2


 , (9)

where (j, k, m) indexes a volumetric grid point at position xjkm.
For this minimization, we employ the L-BFGS-B minimizer [Zhu
et al. 1997], which has been used in [Sloan et al. 2005] to fit zonal
harmonics to a radiance transfer function.

L-BFGS-B is a derivative-based method, so at each iteration we
provide the minimizer with the objective function and the partial
derivatives for each variable. We bound the RBF radii to within
0.015 ∼ 0.09 (with volume size normalized to 1) and the weights
to 0.01 ∼ 1.0 times the largest density value. To avoid entrap-
ment in local minima at early stages of the algorithm, we also em-
ploy a teleportation scheme similar to that in [Cohen-Steiner et al.



2004], where we record the location of the maximum error during
the approximation procedure and then move the RBF with the most
insignificant integration value there. We utilize teleportations at
every 20 iterations of the minimizer, and when the minimizer con-
verges we teleport the most insignificant RBF alternatingly to the
location of maximum error or to a random location with non-zero
data. The algorithm terminates when both teleportation strategies
fail to reduce the objective function. The inclusion of teleportation
into the minimization process often leads to a further reduction of
the objective function by 20% ∼ 30%.

To accelerate this process, we take advantage of the temporal co-
herence in smoke animations by initializing the RBFs of a frame
with the optimization result of the preceding frame. This increases
convergence speed and improves performance. However, a large
number of teleportations may possibly reduce temporal coherence
and cause flickering in the final animation. We avoid this problem
by employing an adaptive insertion scheme, which begins with the
aforementioned teleportation and minimization procedure on the
initial frame. The relative error of this first frame is then recorded
as

∑

j,k,m

[

D(xjkm) −
n
∑

ℓ=1

wℓBℓ(xjkm)

]2

/
∑

j,k,m

D(xjkm)2.

At each of the subsequent frames in the sequence, we first delete
a user-specified number of the most insignificant RBFs, then per-
form L-BFGS-B minimization without teleportations. The con-
verged relative error is compared to that of the first frame, and if
their ratio lies above a given threshold, which is 1.05 ∼ 1.2 for all
data used in this paper, we insert an RBF of fixed radius at the loca-
tion of maximum error and minimize again. Additional RBFs are
inserted in this manner until the relative error ratio is driven below
the threshold or a specified maximum number of RBFs have been
inserted. In our current implementation, 1000 RBFs are used in the
initial frame, and in each subsequent frame, 3 RBFs are removed
and a maximum of 8 RBFs are inserted.

5.2 Residual Field Compression

After computing the RBF approximation of the density field, the

residual density field R(x) = D(x)−D̃(x) is then compressed for
GPU processing. While the residual field is of the same resolution
as the density field, it normally consists of small values. We quan-
titize R(x) to further reduce storage. For all the data used in our
paper, we found 8-bit quantization to be sufficient for visually plau-
sible results. Then, we compress the resulting sparse residual field
by perfect spatial hashing [Lefebvre and Hoppe 2006], which is
lossless and ideally suited for parallel evaluation on graphics hard-
ware.

In our implementation of perfect spatial hashing, we utilize a few
modifications tailored to our application. Unlike in [Lefebvre and
Hoppe 2006] where nonzero values in the data lie mostly along the
surface of a volume, the nonzero values in our residual fields are
distributed throughout the volume. Larger offset tables are there-

fore needed, so we set the initial table size to 3
√

K/3 + 9 (K is the

number of nonzero items in the volume), instead of 3
√

K/6 used in
[Lefebvre and Hoppe 2006].

In processing a sequence of residual fields, we tile several consec-
utive frames into a larger volume on which hashing is conducted.
Since computation is nonlinear to the number of domain slots, we
construct a set of smaller hash volumes instead of tiling all the
frames into a single volume. With smaller hash volumes, we avoid
the precision problems that arise in decoding the domain coordi-
nates of large packed volumes, and facilitate loading of the hash
tables. In our implementation, we tile 33 = 27 frames per volume.

d 

β

1.0

Bu

Bh

rh

l
c

h
c

Figure 5: The optical depth of an RBF Bh is determined by the
angle β and its absolute radius rh. For fast evaluation, we tabu-
late in a preprocessing step a set of zonal harmonics vectors T (β)
that represent optical depth for unit-radius RBFs Bu. At runtime,
the corresponding precomputed ZH vector is retrieved, rotated, and
then multiplied by rh to obtain the optical depth of Bh.

5.3 Single Scattering

To promote runtime performance, source radiance values in the
smoke volume are calculated using the low-frequency RBF approx-

imation of the density field, D̃. We compute single scattering at the
RBF centers according to Eq. (3):

J̃ss(cℓ, ωo) = Ω
4π

∫

S
L̃d(cℓ, ωi)p(ωo, ωi)dωi

= Ω
4π

∫

S
Lin(ωi)τ̃∞(cℓ, ωi)p(ωo, ωi)dωi,

(10)
where τ̃∞(cℓ, ωi) = exp(−

∫

∞ωi

cℓ

σtD̃(u)du) is the approximated

transmittance along direction ωi from infinity to cℓ.

In scattering media, phase functions are often well-parameterized
by the angle θ between the incoming and outgoing directions. For
computational convenience, we therefore rewrite p(ωo, ωi) as a cir-
cularly symmetric function p(z), where z = cos θ. With this repa-
rameterization of the phase function, Eq. (10) can be efficiently
computed in the spherical harmonics domain using the SH triple
product and convolution operators:

J̃ss(cℓ) =
Ω

4π
[(Lin ∗ τ̃ (cℓ)) ⋆ p] . (11)

The SH projections Lin and p are each computed once and reused
until the lighting or phase function is modified by the user. For
a review of spherical harmonic operations, we refer readers to the
Appendix. In the following, we describe how to efficiently compute
the transmittance vector τ̃ (cℓ) on the fly.

Computing the transmittance vector τ̃ (cℓ) Expressing transmit-
tance directly in terms of the RBFs, we have

τ̃(cℓ, ωi) = exp
(

−σt

∑

h
wh

∫

∞ωi

cℓ

Bh(u)du
)

= exp
(

−σt

∑

h
whTh(cℓ, ωi)

)

,

where Th(cℓ, ωi) is the optical depth through RBF Bh along the
path described by cℓ and ωi. We can project τ̃(cℓ, ωi) to the SH
domain to obtain τ̃ (cℓ):

τ̃ (cℓ) = exp
∗

(

−σt

∑

h

whTh(cℓ)

)

,

where Th(cℓ) is the SH projection of Th(cℓ, ωi) and exp
∗

is the SH
exponentiation operator described in the Appendix.

For efficient computation of Th(cℓ), we utilize tabulated optical
depth vectors for unit-radius RBFs at various distances. As illus-
trated in Fig. 5, the optical depths through RBF Bh can be simply



(a) our result (b) ray tracing

Figure 6: Comparison between our results and ray tracing. Top:
single scattering in an approximated density field (root mean square
(RMS) error:4.3%). Middle: single and multiple scattering in the
approximated density field (RMS error:13.8%). Bottom: final re-
sults for the original density field (RMS error:14.1%). Lighting
comes mainly from the top-right corner. The ray tracing result takes
47 minutes to compute, while ours renders at real-time rates. The
smoke density ranges from 0.0 to 1.1, σt = 2.49, Ω = 0.66, and
the smoke volume width is about 3.0 meters. Absolute differences
are included as insets.

computed as rh times that through a unit-radius RBF Bu with the
same subtended half-angle β with respect to cℓ. So we build a table
of optical depth vectors for unit-radius RBFs of various angles β:

β =

{

arcsin(1/d), if d > 1
arccos(d) + π/2, otherwise

,

where d is the distance from cℓ to the center of Bu, and instances
where cℓ exists within Bu are handled by extending the definition
of β to a smoothly varying, monotonic quantity in the range [0, π].
Since the RBF kernel function is symmetric, the construction of
optical depth vectors is equivalent to a 1D tabulation of zonal har-
monic (ZH) vectors [Sloan et al. 2005]. In tabulation, we obtain
satisfactory results by uniformly sampling β at 256 values in [0, π].

To compute Th(cℓ) at runtime, we first retrieve from the table the
corresponding ZH vector T (βℓ,h), where βℓ,h is the angle β evalu-
ated at cℓ with respect to RBF Bh. This ZH vector T (βℓ,h) is then
rotated to the axis determined by cℓ and ch, and multiplied by the
radius rh to obtain Th(cℓ). We note that this computation is anal-
ogous to that in [Ren et al. 2006], except that here we are dealing
with optical depth instead of log space visibility.

Computation of the transmittance vector τ̃ (cℓ) is then straight-
forward. For each RBF center cℓ, we iterate through the set of
RBFs. Their optical depth vectors are retrieved, rotated, scaled, and
summed up to yield the total optical depth vector. Finally, it is mul-
tiplied by the negative extinction cross section and exponentiated to

yield the transmittance vector τ̃ (cℓ). With this transmittance vec-
tor, the source radiance due to single scattering is computed from
Eq. (11).

Comparison This single scattering approximation yields results
similar to those obtained from a volume ray tracer [Kajiya and
von Herzen 1984], as shown in the top row of Fig. 6. The error
is more significant at density boundaries, where the distance to the
samples is large and interpolation error rises. For a clearer compar-
ison, ray tracing is performed with the approximated density field

D̃(x). In rendering the single scattering image, the ray marching
algorithm described in Sec. 5.5 is used without accounting for the
residual.

5.4 Multiple Scattering

Given the single scattering source radiance, the multiple scatter-
ing media radiance is obtained by solving the diffusion equations
in Eq. (5) and Eq. (6). As in [Stam 1995], the diffusion equation
is rewritten in terms of the RBF representation and constructed at
the RBF centers. A linear system is formed, and solved through a
least squares optimization to yield the media radiances at the RBF
centers.

The solution of the diffusion equation can be trivially converted
into order-2 SH media radiance vectors, and then convolved with
the phase function to yield the multiple scattering source radiance

J̃ms(cℓ). The final source radiance is computed as

J̃(cℓ) = J̃ss(cℓ) + J̃ms(cℓ).

Linear System Construction Like the source radiance, the aver-
age media radiance L0

m(x) can be approximated with RBF interpo-
lation:

L0
m(x) ≈ 1

D̃(x)

∑

ℓ
wℓBℓ(x)L0

m(cℓ). (12)

Substituting the RBF representation of L0
m, J0

ss, and J1
ss into

Eq. (5), and approximating D(x) by D̃(x) gives a linear equation
of the unknowns L0

m(cℓ):

∑

ℓ
wℓ

(

D̃2
∇

2Bℓ−3D̃∇D̃·∇Bℓ+(3∇D̃·∇D̃−D̃∇
2D̃)Bℓ

3σtrD̃4
− σaBℓ

)

L0
m(cℓ)

=
∑

ℓ
wℓ

(

σt(∇BℓD̃−Bℓ∇D̃)

σtrD̃2
· J1

ss(cℓ) −
σt

Ω
BℓJ

0
ss(cℓ)

)

.

(13)
For simplicity, we have omitted the variable x in the above equa-
tion. The values of Bℓ(x),∇Bℓ(x) and ∇2Bℓ(x) can be analyt-

ically computed. Then D̃(x),∇D̃(x),∇2D̃(x) can be calculated
according to the RBF representation. We also note that the two-
term Taylor expansion (J0

ss, J
1
ss) of single-scattering source radi-

ances can be trivially converted to and from order-2 SH vectors.

Enforcing Eq. (13) at all RBF centers ch(h = 1 . . . n) (i.e., replac-
ing x with cℓ) results in a linear system

AL
0
m = b,

where A is an n×n matrix, and L0
m = {L0

m(cℓ)}. Solving it gives
the average media radiance L0

m(cℓ) at RBF centers. The directional
component L1

m(cℓ) is then obtained by substituting Eq. (12) into
Eq. (6).

Conjugate Gradient Solver The above linear system can be
solved through a least squares optimization: A

T
AL0

m = A
T b,

which can be done using a conjugate gradient (CG) solver. The
solution is iteratively updated until a user-defined error threshold is
reached.



A useful observation is that the solution of the equation is often tem-
porally coherent as the user rotates the lighting or adjusts the smoke
attributes or as a smoke animation proceeds to the next frame. In
these typical cases, the solution of the previous frame is a good
starting point for the iterations of the current frame. When the user
alters scene or smoke attributes, the RBF set remains unchanged,
and the solution of the previous frame can be directly used to ini-
tialize the CG solver. For temporal progressions, we reconstruct
the initial solution at the current RBF centers by an RBF-based
interpolation of the solution for the previous frame. This simple
optimization significantly improves convergence speed, and 20∼40
iterations are usually sufficient for a visually plausible result. In
cases when no temporal coherence can be exploited, e.g., when the
user switches the environment from one to another, it is necessary
to start the solver from a default initialization.

Comparison The middle row in Fig. 6 compares our multiple scat-
tering result with that from the offline algorithm for volumetric pho-
ton mapping [Jensen and Christensen 1998; Fedkiw et al. 2001].
The diffusion approximation generates errors at the RBF centers,
which are then propagated into the volume. Nonetheless, the two
images are comparable. As in [Fedkiw et al. 2001], we use one
million photons in computing the volume photon map for the com-
parison result. A forward ray march is then performed to produce
the photon map image. Fig. 12 shows another example of multiple
scattering.

5.5 Compensated Ray Marching

From the source radiances at the RBF centers, we interpolate the
source radiance of each voxel in the volume and composite the ra-
diances along each view ray:

L(x, ωo) = τ(xωo
, x)Lin(ωo) +

∫ x

xωo

τ(u, x)σtD(u)J(u, ωo)du

≈ τ(xωo
, x)Lin(ωo) +

∫ x

xωo

τ(u, x)σtJ̃D(u, ωo)du,

(14)
where

J̃D(u, ωo) = D(u)J̃(u, ωo)

= D(u)
(

y(ωo) ·
1

D̃(u)

∑

ℓ
wℓBℓ(u)J̃(cℓ)

)

=
(

1 + R(u)

D̃(u)

) (

∑

ℓ
wℓBℓ(u)(y(ωo) · J̃(cℓ))

)

.

(15)

We compute L(x, ωo) with two passes: a volume pass to obtain
the density field D(u) and the approximate source radiance field

J̃(u, ωo), and a view pass to composite the radiance.

The volume pass renders at volume resolution. It iterates over each

slice of the volume to reconstruct the density field D̃(u). The resid-
ual R(u) is obtained from the hash table, and D(u) is computed as

D̃(u) + R(u). At the same time, the approximate source radiance

field J̃(u, ωo) is computed, and then multiplied by D(u) to yield

J̃D(u, ωo).

The view pass then renders at screen resolution. The RBF vol-
ume is divided along the current view direction into N slices of
user-controllable thickness ∆u. We iterate through these slices to

retrieve both D(u) and J̃D(u, ωo) output by the volume pass, and
composite the final radiance of each screen pixel, as depicted in
Fig. 7. For all the results in the paper, ∆u is set to half of a voxel
length.

More concretely, we calculate the discrete integral of Eq. (14) slice
by slice from far to near in a manner similar to [Levoy 1990]:

L(x, ωo) = Lin(ωo)

N
∏

j=1

∆τj +

N
∑

i=1

(

J̃D(ui)σt∆u

N
∏

j=i+1

∆τj

)

.

...

ui

Slice i

View Ray

u1u2

uN-1
uN

Slice 2

Slice N

Slice N-1

Slice 1

Central Frustum Axis

γ

Figure 7: A 2D illustration of the view pass in ray marching. At the
top right corner is a typical slice taken from the data of Fig. 3.

Here, {ui} contains a point from each slice that lies on the view ray,
and ∆τj is the transmittance of slice j along the view ray, computed
as

∆τj = exp(−σtD(uj)∆u/ cos γ), (16)

where γ is the angle between the view ray and the central axis of the
view frustum. Details of the GPU implementation will be discussed
in the following subsection.

Comparison With compensated ray marching, rendering results
are generated with fine details. The bottom row in Fig. 6 compares
a rendering result with a ray traced image. In this comparison, ray
tracing is performed on the original density field, instead of the ap-
proximated density field. The two results are seen to be compara-
ble. In comparing with the middle row, the additional error caused
by compensated ray marching is small. For a comparison of anima-
tion sequences, please view the supplemental video.

5.6 GPU Implementation

All runtime components of our algorithm can be efficiently imple-
mented on the GPU. For our GPU implementation, a good tradeoff
between performance and quality is obtained using order-4 SHs. In
the following, we describe some implementation details.

Single Scattering Source radiances are directly computed at only
the RBF centers. For single scattering computation, we rasterize a
small 2D quad to trigger a pixel shader, in which the RBF informa-
tion is retrieved from a texture and used to query the optical depth
ZH vector table T (β) described in Sec. 5.3. The resulting ZH vec-
tors are then rotated, scaled, accumulated and exponentiated in a
manner identical to [Ren et al. 2006]. Finally, the source radiance

SH vector J̃ss is computed using the SH triple product and convo-
lution according to Eq. (11), and rendered into four textures using
the OpenGL extensions for multiple render targets and frame buffer
objects.

Multiple Scattering We implement the multiple scattering algo-
rithm using CUDA [NVIDIA 2007]. First, to construct the matrix
A and vector b, Bℓ(ch),∇Bℓ(ch) and ∇2Bℓ(ch) are computed for
all pairs of (ℓ, h) in parallel. Then, for each ch in parallel, the set

of RBFs is iterated to compute D̃(ch),∇D̃(ch) and ∇2D̃(ch). Fi-
nally, the entries of A and b are computed according to Eq. (13).

The matrix-matrix multiplication A
T
A and matrix-vector multipli-

cation A
T b can be performed efficiently using CUBLAS [NVIDIA

2007], an optimized CUDA implementation of BLAS included with
the CUDA SDK.



(a) σt = 0.77, Ω = 0.63 (b) σt = 3.34, Ω = 0.17

Figure 8: Changing the optical parameters of smoke. The light
comes mainly from the bottom of the volume, and the width of the
smoke data is about 4.0 meters.

A GPU CG solver for sparse matrices was described in [Bolz et al.
2003]. However, since the matrix A

T
A may be dense, we sim-

ply implemented a basic CG solver for dense matrices. The ma-
jor computation in the CG solver involves matrix-vector multipli-
cations and vector inner products, which can be efficiently done
using CUBLAS.

Ray Marching The ray march starts from a volume pass that re-
constructs the density field D(u) and approximates the source ra-

diance field J̃(u, ωo) in Eq. (15).

The projection matrix is set to be orthogonal, and the view direc-
tion is set to −Z. Each XY slice that intersects with at least one
RBF is filled in one-by-one. First, a temporary frame buffer ob-
ject (FBO) is bound, and alpha blending is enabled, with both the
source and target blending factors set to GL ONE. We then iterate
over all the RBFs and find their intersections with the current slice,
which can be trivially obtained given the center and radius of each
RBF. A 2D bounding quad is then computed for the circular inter-
section region, and rendered to trigger a pixel shader. In the pixel
shader, wℓBℓ(uj) is evaluated and saved in the alpha channel, and

J̃D,ℓ(uj) = wℓBℓ(uj)(y(ωo) · J̃(cℓ)) is saved in the RGB chan-
nels. The residual R(uj) is retrieved from the hash table, multiplied
with wℓBℓ(uj), and then stored in the RGB channels of a second
color buffer.

When all RBFs are processed, we have
∑

ℓ
J̃D,ℓ(uj), D̃(uj), and

R(uj)D̃(uj) in the color buffers, which are then bound as textures.
We disable alpha blending and render the bounding quad of all the
intersections, with the corresponding slice of a 3D texture bound to

the render target. At each pixel, J̃D(uj) is evaluated according to
Eq. (15) as

J̃D(uj) =

(

1 +
R(uj)

D̃(uj)

)

∑

ℓ

J̃D,ℓ(uj),

and saved in the RGB channels of the color buffer. To avoid
division-by-zero exceptions, residuals are set to zero when D̃(u)
is very small (< 1.0e − 10). The alpha channel is set to D(ui) =

D̃(ui) + R(ui).

Once D(u) and J̃D(u, ωo) have been reconstructed as a 3D tex-
ture, conventional ray marching can be conducted in the view pass
to composite the radiance at screen pixels. First, the final color
buffer is initialized with the background lighting Lin. The projec-
tion and model-view matrices are restored according to the current
camera setting. Alpha blending is enabled again, with the source
blending factor set to GL ONE and the target blending factor set to
GL ALPHA. The slices perpendicular to the central frustum axis
are processed in a far-to-near order. Each slice is intersected with
all the RBFs. A bounding quad is found for the intersections, and is

drawn to the final color buffer. D(u) and J̃D(u, ωo) are retrieved
from the 3D texture, and the RGB channels and alpha channels of

(a) without residual (b) with residual

Figure 9: Fine smoke details generated by compensated ray march-
ing. The density field is approximated by 647 RBFs.

(a) constant (b) HG, g = 0.42

Figure 10: Changing the phase function of smoke. The smoke is
illuminated by a fixed light with a solid angle of 10 degrees. In
the top row, the lighting direction is opposite from the viewing di-
rection. In the bottom row, the viewing and lighting directions are
roughly aligned.

the output color are set to J̃D(ui)σt∆u/ cos γ and ∆τi (Eq. (16)),
respectively.

Separation of the ray marching procedure into a view-independent
volume pass and a view pass leads to improved performance. Faster
processing is obtained from reconstructing the density and source
radiance at volume resolution, which is typically much lower than
the screen resolution. It also allows graphics hardware to be used
for trilinear interpolation of the residuals. Furthermore, if no
changes are made to the density and source radiance field, e.g.,
when the user rotates the view and the phase function is constant,
the 3D texture from the volume pass can be reused. The cost would
be an additional 3D FBO of 16MB for a 1283 volume.

6 Results and Discussion

We implemented our algorithm on a 3.7GHz PC with 2GB of mem-
ory and an NVidia 8800GTX graphics card. Images are gener-
ated at a 800 × 600 resolution. Please see the supplemental video
for live demos. The three sets of smoke animation data used in
this paper are all generated through physically-based simulation.
For all the smoke data used in this paper, the volume resolution is
128 × 128 × 128.

Smoke Visualization As a basic function, our system allows users
to visualize smoke simulation results under environment lighting
and from different viewpoints. With the proposed compensated ray
marching, smoke with fine details can be visualized, as shown in
Fig. 9. More examples are shown in the supplemental video.



(a) without shadow casting (b) with shadow casting

Figure 11: Shadow casting between smoke and scene objects.
Top row: the smoke casts a shadow on the terrain. Bottom: the
pterosaur casts shadow on the smoke.

Scene Fig. 1 Fig. 8 Fig. 10

Frames 600 135 300

Avg. RBFs per frame 612 530 683

RBF approx. RMS error 2.13% 1.57% 2.20%

Decomposition (min) 87 22 51

Hashing (min) 35 9 24

Hash table (MB) 218 37 173

Performance (fps) 19.1 ∼ 95.1 36.4 ∼ 57.8 35.8 ∼ 74.8

Table 2: Statistics and timings. The total preprocessing time is the
sum of the decomposition time and hashing time.

The optical parameters of the smoke can be edited in real time. Both
images of Fig. 8 contain the same smoke density field and environ-
ment lighting. Adjusting the albedo downward and increasing the
extinction cross section darkens the appearance of the smoke and
increases the shading variance. In Fig. 10, with fixed lighting we
change the phase function from constant to the Henyey-Greenstein
(HG) phase function (with eccentricity parameter 0.42). The de-
pendence of the scattered radiance on the view direction can be
seen.

Shadow Casting between Smoke and Objects Combined with
the spherical harmonic exponentiation (SHEXP) algorithm for soft
shadow rendering [Ren et al. 2006], our method can also render dy-
namic shadows cast between the smoke and scene objects, as shown
in Fig. 11. For this scene containing 36K vertices, we achieve real-
time performance at over 20 fps.

For each vertex in the scene, we first compute the visibility vec-
tor by performing SHEXP over the accumulative log visibility of
all blockers. Each RBF of the smoke is regarded as a spherical
blocker whose log visibility is the optical depth vector as computed
in Sec. 5.3. Vertex shading is then computed as the triple product
of visibility, BRDF and lighting vectors. After the scene geometry
is rendered, we compute the source radiance at RBF centers due
to single scattering, taking the occlusions due to scene geometry
into account using SHEXP. Finally, we run the multiple scatter-
ing solver and the compensated ray marching to generate results.
Fig. 12 shows another example of shadow casting.

Performance Table 2 lists statistics for the three examples shown
in the paper. Reasonable preprocessing times were needed, from
0.5 to 1.5 hours. In addition, the residual hash tables are signifi-
cantly smaller than the original density field sequences.

(a) our results (b) ray tracing results

Figure 12: Single scattering (top row) and multiple scattering (bot-
tom row). Light arrives from the top-right corner of the volume, as
indicated by the shadows on the plane below the smoke. The single
scattering results appear dark in the occluded lower-left regions of
the smoke. With multiple scattering, light transport through the vol-
ume yields a more realistic result. The smoke density ranges from
0.0 to 2.0, σt = 1.39, Ω = 0.69, and the smoke volume width is
about 1.6 meters.

The bottleneck of our runtime algorithm is the source radiance com-
putation, which takes up to 64% of the execution time. Single scat-
tering comprises 20-30% of this time, and multiple scattering ac-
counts for the rest. The cost of ray marching depends linearly on
the number of slices N .

The cost of the single scattering simulation grows quadratically
with the SH order. According to our experiments, spherical har-
monics of order 4 produce plausible rendering results for all data
shown in this paper. Lower orders of SH lighting, such as ambient
(SH order 1) lighting, may produce unsatisfactory results though.
Fig. 13 demonstrates single scattering results with lower order SH
lighting for the scene shown in Fig. 12. With ambient lighting,
shadows due to self-occlusion are nearly absent. With SH order
2, most occlusion effects are captured, but the lower portion of the
smoke appears brighter than in Fig. 12.

The number of RBFs, n, is a dominant factor since it has a quadratic
influence on the source radiance computation. For the example
shown in Fig. 1, we generate in Fig. 14 approximations with differ-
ent numbers of RBFs. And the average frame rates are 68.3 fps for
100 RBFs, 24.5 fps for 400 RBFs, and 12.9 fps for 800 RBFs. With
100 RBFs, the smoke appears thin and does not adequately capture
the detail present in the original density field. At 400 RBFs, the ren-
dering result reaches a level where it does not improve appreciably
with greater numbers of RBFs.

Discussion In our implementation, the user can specify the num-
ber of RBFs for density approximation in the initial frame. The
default value of 1000 works well for all examples shown in this pa-
per. In principle, the source radiance at each voxel can be exactly
reconstructed using a sufficiently large number of RBFs. A greater
number of RBFs for approximating the density field leads to a bet-
ter compression rate for the hash table and a higher precision in
the represented shading variance. However, more RBFs also en-
tails a higher computational cost, especially for the source radiance
computation, whose performance depends roughly on the square of
n. This tradeoff between accuracy and performance is an area for
future investigation.



(a) ambient lighting (b) order-2 SH lighting

Figure 13: Single scattering results using lower-order SH lighting.

Figure 14: Rendering results with different numbers of RBFs. From
left to right: 100, 400 and 800.

A limitation imposed by the assumption of low-frequency environ-
ment lighting is that our method cannot handle strongly directional
phase functions. Their effects would be smoothed out by the low-
frequency lighting, because convolving an order-4 SH vector with
SH vectors of higher order would zero out the higher-frequency
bands. According to our experiments, our method can effectively
handle HG phase functions with values of g up to about 0.6. As
the eccentricity of the phase function increases to 0.9, the low order
SH representation becomes unable to capture the directional vari-
ance of the source radiance as shown in Fig. 15.

Our method also has difficulty in rendering sharp illumination ef-
fects such as shafts of light. A much greater number of RBFs and
a high-frequency representation of lighting would be needed for a
close visual approximation. In addition, convergence of the multi-
ple scattering simulation would require many additional iterations.

We compute the source radiance due to multiple scattering by solv-
ing the diffusion equation, which is a reasonable approximation for
optically dense media, i.e., the ratio between the mean free path
and the characteristic length of the medium is less than 1/4. On
the other hand, thin media can also be handled by our algorithm
by rendering single scattering alone. Media of intermediate optical
density, however, may not be generated as accurately.

7 Conclusion and Future Work

In this paper, we have presented a method for real-time render-
ing of smoke animations that allows for interactive manipulation
of environment lighting, viewpoint, and smoke attributes. Though
a number of techniques have been proposed for efficient rendering
of static participating media, they require substantial computation
or precomputation, making them unsuitable for editing and render-
ing of dynamic smoke. Based on a presented decomposition of
smoke volumes, our method utilizes a low-frequency density field
approximation to gain considerable efficiency, while incorporating
fine details in a manner that allows for fast processing with high vi-
sual fidelity. Indeed, this method represents the first to render single
and multiple scattering of smoke that is both real-time and a close
match to offline ray tracing.

Local light sources, particularly light sources inside the medium,
are challenging to process efficiently in our current method. As in
[Ren et al. 2006], analytical circular local light sources could be
incorporated, but with the cost of evaluating Lin (or Lin) at each

(a) order-4 SH lighting (b) original lighting

Figure 15: Comparison between the low-frequency lighting used
in our implementation and the all-frequency lighting of the origi-
nal environment map. The medium is strongly forward scattering
with a Henyey-Greenstein phase function of g = 0.9. The lighting
comes from the back side of the volume, and the phase angle range
is marked on the phase function curve.

RBF center. A sorting problem arises when the local light source
enters the smoke volume, since RBFs behind the local light source
should not be added into the accumulative optical depth vector. We
plan to examine these issues in future work.

Additionally, we are interested in reducing the cost of precompu-
tation, or developing further approximations that would possibly
eliminate the need for precomputation. Combining our method with
the latest real-time smoke simulation technique [Crane et al. 2007]
is also an interesting direction, which would make our technique
directly useful for interactive simulations or games.

Acknowledgements

We would like to thank the anonymous reviewers for their helpful
comments. Special thanks to Linjie Luo and Yizhou Yu for provid-
ing the smoke animation data. Hujun Bao was partially supported
by the NSF of China (No. 60633070) and the 973 Program of China
(No. 2002CB312102).

References

BIRI, V., MICHELIN, S., AND ARQUÈS, D., 2004. Real-time single scat-

tering with shadows. http://igm.univ-mlv.fr/˜biri/indexCA en.html.

BLINN, J. F. 1982. Light reflection functions for simulation of clouds and

dusty surfaces. In ACM SIGGRAPH, 21–29.

BOLZ, J., FARMER, I., GRINSPUN, E., AND SCHRÖODER, P. 2003.

Sparse matrix solvers on the GPU: conjugate gradients and multigrid.

ACM Trans. Graph. 22, 3, 917–924.

CEREZO, E., PÉREZ, F., PUEYO, X., SERÓN, F. J., AND SILLION, F. X.

2005. A survey on participating media rendering techniques. The Visual

Computer 21, 5, 303–328.

COHEN-STEINER, D., ALLIEZ, P., AND DESBRUN, M. 2004. Variational

shape approximation. ACM Trans. Graph. 23, 3, 905–914.

CRANE, K., LLAMAS, I., AND TARIQ, S. 2007. Real-time simulation and

rendering of 3d fluids. GPU Gems 3, Chapter 30.

DOBASHI, Y., KANEDA, K., YAMASHITA, H., OKITA, T., AND NISHITA,

T. 2000. A simple, efficient method for realistic animation of clouds. In

ACM SIGGRAPH, 19–28.

EBERT, D. S., AND PARENT, R. E. 1990. Rendering and animation

of gaseous phenomena by combining fast volume and scanline a-buffer

techniques. In ACM SIGGRAPH, 357–366.

FEDKIW, R., STAM, J., AND JENSEN, H. W. 2001. Visual simulation of

smoke. In ACM SIGGRAPH, 15–22.

GEIST, R., RASCHE, K., WESTALL, J., AND SCHALKOFF, R. J. 2004.

Lattice-boltzmann lighting. In Rendering Techniques, 355–362.

HARRIS, M. J., AND LASTRA, A. 2001. Real-time cloud rendering. In

Eurographics, 76–84.



HEGEMAN, K., ASHIKHMIN, M., AND PREMOZE, S. 2005. A lighting

model for general participating media. In Symposium on Interactive 3D

Graphics and Games, 117–124.

JAROSZ, W., DONNER, C., ZWICKER, M., AND JENSEN, H. W. 2007.

Radiance caching for participating media. In ACM SIGGRAPH 2007

Sketches.

JENSEN, H. W., AND CHRISTENSEN, P. H. 1998. Efficient simulation of

light transport in scences with participating media using photon maps. In

ACM SIGGRAPH, 311–320.

KAJIYA, J. T., AND VON HERZEN, B. P. 1984. Ray tracing volume densi-

ties. In ACM SIGGRAPH, 165–174.

KNISS, J., PREMOZE, S., HANSEN, C., SHIRLEY, P., AND MCPHERSON,

A. 2003. A model for volume lighting and modeling. IEEE Trans. Vis.

Comp. Graph. 9, 2, 150–162.

LAFORTUNE, E. P., AND WILLEMS, Y. D. 1996. Rendering participating

media with bidirectional path tracing. In Eurographics Workshop on

Rendering, 91–100.

LEFEBVRE, S., AND HOPPE, H. 2006. Perfect spatial hashing. ACM Trans.

Graph. 25, 3, 579–588.

LEVOY, M. 1990. Efficient ray tracing of volume data. ACM Trans. Graph.

9, 3, 245–261.

NARASIMHAN, S. G., AND NAYAR, S. K. 2003. Shedding light on the

weather. In IEEE Comp. Vision Patt. Rec., 665–672.

NVIDIA, 2007. CUDA homepage.

http://developer.nvidia.com/object/cuda.html.

PREMOZE, S., ASHIKHMIN, M., RAMAMOORTHI, R., AND NAYAR, S.

2004. Practical rendering of multiple scattering effects in participating

media. In Eurographics Symposium on Rendering, 363–374.

REN, Z., WANG, R., SNYDER, J., ZHOU, K., LIU, X., SUN, B., SLOAN,

P.-P., BAO, H., PENG, Q., AND GUO, B. 2006. Real-time soft shadows

in dynamic scenes using spherical harmonic exponentiation. ACM Trans.

Graph. 25, 3, 977–986.

RILEY, K., EBERT, D. S., KRAUS, M., TESSENDORF, J., AND HANSEN,

C. 2004. Efficient rendering of atmospheric phenomena. In Eurograph-

ics Symposium on Rendering, 375–386.

RUSHMEIER, H. E., AND TORRANCE, K. E. 1987. The zonal method for

calculating light intensities in the presence of a participating medium. In

ACM SIGGRAPH, 293–302.

RUSHMEIER, H. E. 1988. Realistic image synthesis for scenes with rela-

tively participating media. PhD thesis, Cornell University.

SCHPOK, J., SIMONS, J., EBERT, D. S., AND HANSEN, C. 2003. A

real-time cloud modeling, rendering, and animation system. In ACM

SIGGRAPH/Eurographics Symp. Computer Animation, 160–166.

SLOAN, P.-P., KAUTZ, J., AND SNYDER, J. 2002. Precomputed radi-

ance transfer for real-time rendering in dynamic, low-frequency lighting

environments. In ACM SIGGRAPH, 527–536.

SLOAN, P., LUNA, B., AND SNYDER, J. 2005. Local, deformable precom-

puted radiance transfer. ACM Trans. Graph. 24, 3, 1216–1224.

STAM, J., AND FIUME, E. 1995. Depicting fire and other gaseous phenom-

ena using diffusion processes. In ACM SIGGRAPH, 129–136.

STAM, J. 1994. Stochastic rendering of density fields. In Graphics Inter-

face, 51–58.

STAM, J. 1995. Multiple scattering as a diffusion process. In Eurographics

Workshop on Rendering, 41–50.

SUN, B., RAMAMOORTHI, R., NARASIMHAN, S., AND NAYAR, S. 2005.

A practical analytic single scattering model for real time rendering. ACM

Trans. Graph. 24, 3, 1040–1049.

SZIRMAY-KALOS, L., SBERT, M., AND UMMENHOFFER, T. 2005. Real-

time multiple scattering in participating media with illumination net-

works. In Rendering Techniques, 277–282.

ZHOU, K., HOU, Q., GONG, M., SNYDER, J., GUO, B., AND SHUM, H.-

Y. 2007. Fogshop: Real-time design and rendering of inhomogeneous,

single-scattering media. In Pacific Graphics, 116–125.

ZHU, C., BYRD, R. H., LU, P., AND NOCEDAL, J. 1997. L-BFGS-

B: Fortran subroutines for large-scale bound constrained optimization.

ACM Trans. Math. Softw. 23, 4, 550–560.

Appendix: Spherical Harmonic Operations

Low-frequency spherical functions can be efficiently represented in terms

of spherical harmonics (SHs). In this appendix, we briefly review spherical

harmonic operations that are used in our algorithm.

Projection A spherical function f(s) can be projected onto a basis set y(s)
to obtain a vector f that represents its low-frequency components:

f = (f0, f1, . . . , fn2 ) =

∫

S

f(s)y(s)ds.

The first several SH basis functions are

y0(s) =
√

1
4π

,

y1(s) = −
√

3
4π

y, y2(s) =
√

3
4π

z, y3(s) = −
√

3
4π

x

where x, y, z is the Cartesian coordinate of s. Note that the first two terms

of a spherical function’s Taylor expansion can be trivially converted to its

SH coefficients of the first two orders, and vice versa.

An order-n SH projection has n2 vector coefficients. With these coeffi-

cients, we can reconstruct a spherical function f̃(s) that approximates f(s):

f̃(s) =

n2
−1
∑

i=0

fiyi(s) = f · y(s).

Triple product Denoted by f ∗ g, the SH triple product represents the

order-n projected result of multiplying the reconstructions of two order-n

vectors:

f ∗ g =

∫

S

f(s) g(s) y(s) ds ⇒ (f ∗ g)i =
∑

j,k

Γijk fj gk,

where the SH triple product tensor Γijk is defined as

Γijk =

∫

S

yi(s) yj(s) yk(s)ds.

Γijk is symmetric, sparse, and of order 3 [Ren et al. 2006].

Convolution The convolution of two spherical functions f(s) and g(s) is

given by

(f ⋆ g)(s) =

∫

S

f(t)g (Rs(t)) dt

where g(s) is a circularly symmetric function, and Rs is a rotation along

the elevation angle towards direction s (i.e., the angle between the positive

z-axis and direction s). SH convolution, denoted by f ⋆ g, represents the

order-n projected result of convolving the reconstructions of two order-n

vectors [Sloan et al. 2005]:

f ⋆ g =
∫

S

∫

S
f(t)g (Rs(t)) y(s) dt ds ⇒

(f ⋆ g)m
l

=
√

4π
2l+1

fm
l

g0
l
.

Exponentiation Denoted by exp∗(f), SH exponentiation represents the

order-n projected result of the exponential of a reconstructed order-n vector:

exp∗(f) =

∫

S

exp(f(s))y(s)ds.

This can be efficiently calculated on the GPU using the optimal linear ap-

proximation described in [Ren et al. 2006]:

exp∗(f) ≈ exp

(

f0√
4π

)

(

a(‖f̂‖)1 + b(‖f̂‖)f̂
)

,

where f̂ = (0, f1, f2, ..., fn2−1), 1 = (
√

4π, 0, 0, ..., 0), and a, b are

tabulated functions of the magnitude of input vector f̂ .


