
Example-Based Hair Geometry Synthesis

Lvdi Wang1

1Tsinghua University
Yizhou Yu2

2University of Illinois at Urbana-Champaign
Kun Zhou3

3Zhejiang University
Baining Guo1,4

4Microsoft Research Asia

(a) (b)

(c) (f)

(d) (e) (g) (h)

Figure 1: Example-based hair geometry synthesis pipeline. (a) input hair geometry (level-0); (b) level-1 and (c) level-2 geometry of the input
hierarchy built upon (a); (d) 2D feature map generated from (c); (e) output feature map generated from (c) using 2D texture synthesis; (f)
level-2 geometry reconstructed from (e); (g) level-1 of the output hierarchy; (h) final output hair geometry.

Abstract

We present an example-based approach to hair modeling because
creating hairstyles either manually or through image-based acquisi-
tion is a costly and time-consuming process. We introduce a hierar-
chical hair synthesis framework that views a hairstyle both as a 3D
vector field and a 2D arrangement of hair strands on the scalp. Since
hair forms wisps, a hierarchical hair clustering algorithm has been
developed for detecting wisps in example hairstyles. The coarsest
level of the output hairstyle is synthesized using traditional 2D tex-
ture synthesis techniques. Synthesizing finer levels of the hierarchy
is based on cluster oriented detail transfer. Finally, we compute
a discrete tangent vector field from the synthesized hair at every
level of the hierarchy to remove undesired inconsistencies among
hair trajectories. Improved hair trajectories can be extracted from
the vector field. Based on our automatic hair synthesis method, we
have also developed simple user-controlled synthesis and editing
techniques including feature-preserving combing as well as detail
transfer between different hairstyles.

CR Categories: I.3.5 [Computer Graphics]: Computa-
tional Geometry and Object Modeling—boundary representations
I.3.7 [Computer Graphics]: Three-dimensional Graphics and
Realism—color, shading, shadowing, and texture

Keywords: Hair Modeling, Texture Synthesis, Hair Clustering,
Detail Transfer, Vector Fields

1 Introduction

Many graphics and internet applications, including film making
(crowd simulation), game development and online virtual worlds,
make heavy use of avatars whose hairstyles need to be modeled re-
alistically with individuality. Designing visually realistic and pleas-
ing hairstyles, either manually or through 3D image-based acqui-

sition [Paris et al. 2004; Wei et al. 2005; Paris et al. 2008], is a
costly and time-consuming process. This motivates an example-
based methodology that creates novel hairstyles with reference to
existing ones. Considering that hair roots are distributed over the
2D scalp surface, creating novel hairstyles from examples could be
cast as a 2D texture synthesis problem. The fact, that hair strands
with nearby roots share similar geometry and form wisps, indicates
that the Markov random field assumption, commonly used in tex-
ture synthesis, also holds for most hairstyles. However, each hair
strand is a 3D space curve with a long trajectory that is not solely
determined by the location of the hair root. The tangents of all the
hair strands form a 3D vector field whose consistency cannot be
guaranteed by a 2D synthesis method. Likewise, the wisp struc-
tures of a hairstyle cannot be well preserved by indirect hair syn-
thesis through the synthesis of the 3D hair tangent field. Therefore,
a hair synthesis technique needs to simultaneously address both 2D
and 3D aspects of a hairstyle.

There exist a few difficulties we need to overcome before novel
hairstyles can be successfully synthesized. First, to employ 2D tex-
ture synthesis algorithms, we need to define a low-distortion pa-
rameterization of the scalp and the geometry of hair strands needs
to be expressed as scalar channels of a 2D map. Second, character-
istic wisp structures and the subtle geometric variations internal to
the wisps are essential to the appearance of a hairstyle. A synthe-
sized hairstyle needs to inherit these characteristics from the input
hairstyle. Since each strand represents a long and complex trajec-
tory, synthesizing the wisp structures of such long trajectories rep-
resents a significant challenge. Third, the 3D vector field formed by
the tangents of hair strands describe their collective behavior in the
3D space. The spatial coherence of this vector field means when
two hair trajectories pass through the same local region, the two
trajectories tend to have similar tangent vectors within this region
no matter how far apart their hair roots are. Observing this type of
coherence during hair synthesis represents another challenge.

In this paper, we introduce a hierarchical hair synthesis framework
that, given an input hairstyle, can create a novel one with a sta-
tistically similar spatial arrangement of hair strands and geomet-
ric details. It views a hairstyle both as a 2D arrangement of hair
strands and a 3D vector field. Specifically, we have developed the
following components. First, a low-distortion parameterization of
the scalp and its surrounding hair volume is defined. Second, to
support wisp oriented synthesis, an effective hierarchical cluster-
ing algorithm has been developed to detect clusters in the input

hairstyle. Each cluster has a center strand as its representative.
Third, traditional 2D texture synthesis is extended to coarsest-level
hair synthesis. Synthesizing finer levels of hair is based on cluster
oriented detail transfer. That is, only the differences between an in-
put strand and its corresponding center strand are transferred to the
synthesized hair. Finally, to enforce spatial coherence of tangent
vectors, we compute a discrete vector field from the synthesized
hair at every level of the hierarchy to remove undesired inconsisten-
cies among hair trajectories. Improved hair trajectories with more
coherent tangent vectors can be extracted from the vector field.

Based on the aforementioned hair synthesis framework, we have
also developed simple mechanisms for user-controlled hair synthe-
sis and editing, which can be performed either at a global scale by
editing the hair geometry at the coarsest level of the hierarchy or
at a local scale by transferring cluster-level geometric details from
one hairstyle to another.

2 Related Work

Our work is made possible by recent progress on hair acquisition,
hair modeling, texture synthesis and geometry synthesis.

Hair Acquisition. There has been significant progress on hair ac-
quisition [Paris et al. 2004; Wei et al. 2005; Paris et al. 2008] from
multiple camera views. An oriented filter bank with high angu-
lar resolution was adopted to detect hair orientation in [Paris et al.
2004]. Hand-held lights or cameras were used in [Paris et al. 2004;
Wei et al. 2005] while triangulation was used in [Paris et al. 2008] to
obtain more accurate 3D location in a multi-project, multi-camera
setup. Hair acquisition is inherently a very hard problem because of
the thin geometry of hair strands and numerous occlusions among
them. It is almost impossible for a regular camera to directly ac-
quire data from the interior of the hair volume. Existing methods
typically acquire the outmost layer and interpolate inside the hair
volume. The hair exemplars used as input to our synthesis algo-
rithm were actually acquired from real hairstyles.

Hair Geometry Modeling. Synthetic hair modeling has a long
history. Watanabe and Suenaga [1992] proposed a wisp model, ex-
tended by Chen et al. [1999]. In an integrated hair system by Dalde-
gan et al. [1993], characteristic hair strands define the boundary of
wisps. Exploiting the connections between vector fields and smooth
hairstyles, interactive hairstyling systems have been developed by
Hadap and Thalmann [2000] and Yu [2001]. A multiresolution hair
modeling system based on the observation that adjacent hair strands
tend to form clusters at multiple scales was developed by Kim and
Neumann [2002]. Our synthesis algorithm is based on a hierarchi-
cal clustering of the input hairstyle. This clustering process can be
regarded as the inverse process of the hierarchical modeling frame-
work in [Kim and Neumann 2002]. An interactive technique based
on a statistical wisp model and a physically based static deforma-
tion solver is proposed in [Choe and Ko 2005] to model a wide
range of hairstyles. A survey of hair modeling techniques can be
found in [Ward et al. 2007]. Note that none of these techniques
relies on captured hairstyles to generate novel ones.

Texture Synthesis. This paper was partially inspired by the re-
cent success in texture synthesis [Bonet 1997; Efros and Leung
1999; Wei and Levoy 2000; Ashikhmin 2001; Liang et al. 2001;
Efros and Freeman 2001; Hertzmann et al. 2001; Kwatra et al.
2003; Kwatra et al. 2005; Lefebvre and Hoppe 2005; Lefebvre
and Hoppe 2006; Han et al. 2008]. A representative approach
[Efros and Leung 1999; Wei and Levoy 2000] models textures
as Markov Random Fields and generates novel textures by non-
parametric conditional pixel-based sampling. This approach was
further generalized to non-parametric patch-based sampling [Efros

and Freeman 2001; Liang et al. 2001]. Kwatra et al. [2005] consid-
ers patch-based texture synthesis as an energy optimization problem
and achieved robust results. A GPU-based parallel synthesis algo-
rithm was developed in [Lefebvre and Hoppe 2005], which was
further extended to appearance-space synthesis in [Lefebvre and
Hoppe 2006]. A multiscale texture synthesis method capable of in-
finite zoom has been proposed in [Han et al. 2008]. There has also
been much work on generalizing 2D texture synthesis to meshes
[Praun et al. 2000; Turk 2001; Wei and Levoy 2001] and volumes
[Kopf et al. 2007; Takayama et al. 2008].

As discussed earlier, a hairstyle should be regarded both as a 2D
spatial arrangement of hair strands on the scalp and a 3D vector
field. Existing texture synthesis methods are not directly applicable
to hair because either 2D or 3D texture synthesis addresses only one
of the two aspects of hair. There exists much work on generalizing
texture synthesis to curves [Hertzmann et al. 2002] and geometric
synthesis [Bhat et al. 2004; Lai et al. 2005; Lagae et al. 2005; Zhou
et al. 2006; Zhou et al. 2007]. Nevertheless, none of them is appli-
cable to a volumetric packing of thin curves, such as hair.

3 Scalp Space

The scalp is a curved surface that is to a certain extent similar to
a hemisphere. To facilitate hair strand comparison and hairstyle
synthesis, we define a 3D parameterization, named the scalp space,
for the curved hair volume bounded by the scalp from below. A
2D parameterization of the scalp surface can be easily extracted by
simply discarding the third parameter. At every point on the scalp
and in the hair volume, we also define a local frame taking into
account the local tangent space on the scalp.

Without loss of generality, we can assume that the scalp surface
is similar to the upper half of a unit sphere. The world coordinate
frame is originated at the center of the hemisphere. Its y-axis points
upward. Given a world space point P = (x, y, z), its scalp space
coordinates (u, v, w) are defined as follows:

u = arccos
x̂√

x̂2 + (ŷ + 1)2

v = arccos
ẑ√

ẑ2 + (ŷ + 1)2

w =
√
x2 + y2 + z2 − d(x̂, ŷ, ẑ) (1)

where (x̂, ŷ, ẑ) is the spherical projection of (x, y, z) onto the unit
sphere, d(x̂, ŷ, ẑ) is the distance from the center of the hemisphere
to the scalp along the direction defined by (x̂, ŷ, ẑ).

As shown in Figure 2, the parameter u can be intuitively interpreted
as the angle between the x-axis and the projection of S0P onto the
XY -plane where S0 = (0,−1, 0). The parameter v can be defined
similarly with respect to the Y Z-plane and z-axis. w is simply the
height above the scalp.

The backward mapping can be derived easily from Eq. (1):

x = ρh cotu

y = ρ(h− 1)

z = ρh cot v (2)

where h = 2
cot2 u+cot2 v+1

and ρ = w+d(h cotu, h−1, h cot v).

Unlike the parameterization defined by longitude and latitude, our
parameterization of the scalp only has a single singularity at S0 =
(0,−1, 0). Distortion introduced by our parameterization becomes
larger as y decreases. In practice, however, we can always map the

Y

X

Z

P
′

w

P

X

Y

O

P
′

S0 = (0,−1, 0)

u

Z

Y

O

P
′

S0 = (0,−1, 0)

v

Figure 2: 3D Scalp Space Parameterization. Given a world space point P (x, y, z) and its spherical projection P ′ on the unit sphere, its
scalp space coordinates (u, v, w) has an intuitive meaning: u and v can be interpreted as two angles ranging from 0 to π as shown in the
two rightmost figures.

hair roots to the upper hemisphere where the distortion is acceptable
for our application.

We also define a local tangent frame at every point on the scalp sur-
face. To compute the tangent and binormal vector within the frame,
we first compute a rotation matrix, R, that represents the rotation
from the y-axis to the local surface normal. Then, the local tangent
and binormal are defined by rotating the x- and z-axis respectively
using R. This definition can be extended to any point in the hair
volume. The local frame at such a point shares the same coordinate
axes with the point on the scalp that has the same u and v.

4 Hierarchical Hair Clustering

To reproduce characteristic hierarchical wisp structures during
example-based hairstyle synthesis, it is crucial to identify such
structures for the example hairstyles. Inspired by the triangle clus-
tering algorithm in [Cohen-Steiner et al. 2004], we introduce a vari-
ational hair clustering algorithm which automatically divides the
original set of hair strands into k clusters and computes a center
strand for each cluster. The set of these k clusters is called a k-
partition. With this algorithm, building the full hierarchy follows
a straightforward process: at each level of the hierarchy, we divide
the hair strands at the current level into clusters and let the center
strands be the hair strands in the next (coarser) level.

Our hair clustering follows the general approach of Lloyd’s algo-
rithm (a.k.a. k-means clustering) [Lloyd 1982], which is guaranteed
to converge. Lloyd’s algorithm alternately repeats the following
two phases: partitioning and fitting. For the first phase, we design a
cluster growing algorithm that simultaneously expands all the clus-
ters from their seeding strands to cover the entire set of strands.
It guarantees that strands within the same cluster are connected
according to a predefined neighborhood structure. In the second
phase, we compute for each cluster an optimal local representative,
the center strand.

4.1 Energy Function

Defining an appropriate energy function is a key ingredient in clus-
tering. Given two hair strands γa and γb, we first discretize each
of them into ns sample vertices. Let γa(l) and γb(l) denote the
coordinates of the l-th vertex (from root to tip) in the local frame
defined at the root of γa and γb, respectively. Then we define theL2

distance between them as L2(γa, γb) =
∑ns

l=1
‖γa(l) − γb(l)‖2.

Note that in this equation we do not add more weights to the hair
roots, because we would like to emphasize the similarity between
“more visible” portions of the hair strands. We refer to the input set
of hair strands as S, its k clusters as Si, and their current respective

center strand as γ̄i. The overall energy function for hair clustering
is defined as

E(S) =

k∑
i=1

|Si|∑
j=1

L2(γij , γ̄i), (3)

where γij represents the j-th strand in the i-th cluster.

4.2 Partitioning

Knowing a fixed set of center strands, we wish to update the par-
tition while minimizing the energy function in (3). For the i-
th cluster of the previous partition, we first locate a seed strand
γi1 ∈ Si that is most similar to its associated center strand, i.e.,
γi1 = arg minγj∈Si L2(γj , γ̄i). In the very first iteration, the parti-
tioning phase picks k strands at random, and each of these strands is
designated a center strand as well as a seed strand. The assignments
of all the other strands are initially set to null. In order to cluster
together only strands that are similar to the center strand, for each
seed strand γi1, we insert every strand γj in its neighborhood into a
global priority queue, with a priority inversely proportional to the
distance to the corresponding center strand, L2(γj , γ̄i), and we fur-
ther post a tag indicating the cluster label i of the center strand it
is being tested with. The neighborhood of a strand is acquired by
Delaunay triangulation of all hair roots.

The region-growing process proceeds by repeatedly popping hair
strands with the highest priority until the queue is empty. For each
popped strand, we check its cluster assignment. If it has already
been assigned to a cluster, we do nothing and skip to the next strand
in the queue; otherwise, we assign it to the cluster indicated by
its tag, and push its unlabeled neighboring strands into the queue
along with the same tag. When the priority queue has been emptied,
each strand has been assigned to a cluster. Notice that this process
ensures connected and non-overlapping clusters as required, and
that it has a low computational complexity, N logN , where N is
the total number of strands.

4.3 Fitting

Once we have obtained a new partition, we wish to update the center
strand of every cluster in order for it to be the best representative.
For the L2 distance metric, the center strand that minimizes the
energy function in (3) is simply the average of the hair strands in
each cluster.

4.4 Adaptive Clustering

Usually it is inconvenient for the user to decide the proper number
of clusters for a given hairstyle. Therefore we have made a simple
extension, called adaptive clustering, that allows the algorithm to

determine an appropriate number of clusters based on a user-given
error threshold ε. The adaptive clustering algorithm aims to itera-
tively find a k-partition for a given set of strands S so that for any
strand γj in S and its associated center strand γ̄i, the distance be-
tween them, L2(γj , γ̄i), is always less than ε. The algorithm starts
by performing fixed-k clustering on S with a relatively small ini-
tial number of clusters, k0. In each resulting cluster, if the distance
from its center strand to certain strands in the cluster is larger than
ε, the strand with the largest distance to the center strand is set to
be the seed of a new cluster.

When building the full hierarchy for a given hairstyle, we apply
adaptive clustering only on the finest level. The number of clusters
in a coarser level is set to be one fourth of that in the finer level.

Figure 3 shows the overall energy E(S) as a function of the num-
ber of iterations. As can be seen, a few iterations suffice to reach a
much reduced value. Due to the region growing nature that guaran-
tees the connectedness of every resulting cluster, there is no theoret-
ical proof that our iterative clustering always converges. However,
convergence has been achieved in all our experiments.

0

0.3

0.6

0.9

1.2

1.5

1.8

O
v
er

al
l
E

n
er

gy
E
(S

)

×103

k=100

167

210
218 220

1 6 11 16 21 26 31
Number of Iterations

Figure 3: A hairstyle with 40,000 strands is divided into 220 clus-
ters using our adaptive clustering algorithm. The curve shows the
overall energy E(S) as a function of the number of iterations; red
dots indicate the cluster splitting stages; the number of clusters (k)
is shown in italics next to the red dots.

5 Hierarchical Cluster-Based Synthesis

The hair clustering stage generates a full hierarchy for the input
hairstyle from which we can synthesize novel hairstyles. The syn-
thesis starts from the coarsest hierarchical level where the synthe-
sized hairstyle models the global hair flow. We represent the ge-
ometry of each strand using a multi-dimensional feature vector and
utilize a 2D texture synthesis algorithm to synthesize a 2D map
of these feature vectors (Section 5.1). Once we have the coarsest
level of the output hairstyle, we synthesize finer levels by progres-
sively adding more geometric details to the global hair flow. Since
we would like to preserve large-scale hair geometry synthesized in
coarser levels while adding more details, our algorithm only trans-
fers displacements between hair strands and the center strand of the
cluster they belong to (Section 5.2).

In hairstyle synthesis, the meaning of spatial coherence is two fold.
First, when hair roots are close to each other on the scalp surface,
corresponding hair strands tend to form wisps and have similar ge-
ometry. Second, every hair strand has a curved trajectory in the hair
volume and spatially close portions of the trajectories tend to share
similar tangent vectors. The aforementioned cluster based synthesis
only considers the first type of coherence. We improve the second
type of coherence with a 3D vector field representing the tangents
of hair strands. After synthesizing each level, we compute a dis-
crete vector field based on the tangent vectors of the hair strands

on that level. Updated hair strands with improved consistency and
continuity are generated by tracing this vector field (Section 5.3).
The details of these synthesis steps are presented in the following
subsections.

5.1 Feature Map Synthesis

Hair synthesis at the coarsest level of the hierarchy is reduced to
classical 2D texture synthesis. In hair clustering, we have dis-
cretized a hair strand into a fixed number (ns) of sample vertices
and evaluate each vertex’s coordinates in the local frame defined
at the root of the hair strand. Concatenating the 3D coordinates of
all these hair vertices together, we obtain a 3ns-dimensional vec-
tor. We further perform Principal Components Analysis (PCA) on
all vectors of hair geometry and project them to a nf -dimensional
subspace, yielding what we call the feature vectors. Note that PCA
projection has been previously used in texture synthesis [Hertz-
mann et al. 2001; Liang et al. 2001; Lefebvre and Hoppe 2006]
but not in hair modeling. In practice, we have found that nf = 16
is sufficient for all the hairstyles we tested.

With the definition of hair feature vectors, we can now generate
a 2D feature map F(S) for any given hair set S using our (u, v)
parameterization of the scalp surface discussed in Section 3. Since
the hair roots are irregularly distributed on the scalp surface, we
need to compute interpolated feature vectors at regularly spaced
grid points in the feature map. Once we have the input feature map,
theoretically we could use any existing 2D texture synthesis method
to generate a new feature map for the output hairstyle. In the current
implementation, we use texture optimization [Kwatra et al. 2005]
for its high quality.

Once we have a synthesized feature map for the output hairstyle,
we can reconstruct the geometry of the hair strands from their PCA
coefficients. We first randomly generate hair roots within a user
specified scalp region, and apply the relaxation procedure in [Turk
2001] to make the hair roots more uniformly distributed. Then for
each hair root, we find a spatially closest feature vector from the
synthesized feature map and reconstruct the geometry. The number
of generated strands is set to roughly match the spatial density of
hair roots in the same level of the input hierarchy.

5.2 Cluster Oriented Detail Transfer

To perform hierarchical cluster based synthesis, we need to gener-
ate a hierarchy of clusters for the output hairstyle. We adopt the
top-down approach in [Kim and Neumann 2002] to build such a hi-
erarchy. The basic idea is to consider every hair strand at a coarser
level as a center strand and assign those hair strands at the finer
level to the closest strand at the coarser level.

Wisp structures and the subtle geometric variations internal to
the wisps are essential characteristics of a hairstyle. A synthe-
sized hairstyle needs to inherit these characteristics from the input
hairstyle. Thus, we chose to hierarchically synthesize geometric
details for the synthesized hairstyle on a per-cluster basis. In our
hierarchical synthesis, a strand at a coarser level serves as the cen-
ter strand of a cluster at the next finer level. When synthesizing a
level except the coarsest in the output hierarchy, we find for each
output cluster at the current level a corresponding input cluster at
the same level of the input hierarchy. This is achieved by locating
the input cluster whose center strand is most similar to the output
cluster’s center strand, which is inherited from the coarser level.
This search is accelerated using the PCA-based feature vectors as
in Section 5.1, with two modifications. First, a per-strand-aligned
local tangent frame is obtained for each center strand γ̄i by rotating
the local frame defined in Section 3 around its normal, so that the
tangent vector in the new frame is aligned with the average tangent

vector of γ̄i projected onto the scalp tangent plane. The average
tangent vector of any strand γ is defined as

vg(γ) =

∑ns

i=2
(γ(i)− γ(1))

‖
∑ns

i=2
(γ(i)− γ(1))‖

. (4)

The second modification is that the input vectors of PCA contain
both center strands of the input and output hairstyles, measured un-
der the aforementioned per-strand local frames.

Note that these modifications enable similarity measurement within
per-strand-aligned local frames to discount any differences in
the global orientation of the strands. This is important to the
displacement-based detail transfer.

Given a pair of corresponding clusters, Sinj and Souti , at the same
level in the input and output hierarchies, respectively, we superpose
the extracted geometric details from Sinj onto the center strand of
Souti to yield the final geometry of the strands in Souti . The center
strand of Souti thus supplies the base geometry. Note that initially
all strands except the center strand of the output cluster Souti have
no geometric information but their root locations.

Displacement Definition. Given two discretized hair strands γa
and γb, γa(i) and γb(i) denote the world space coordinates of the
i-th vertex of γa and γb respectively. The displacement of γa with
respect to γb, is evaluated on every vertex (sample point). The
displacement of γa from γb can be divided into two components
Dα(γa, γb) and Dβ(γa, γb) which we will define separately. We
use the term D(γa, γb, i) to denote the displacement of γa’s i-th
vertex.

The first component, Dα(γa, γb), describes the relative displace-
ment between two hair strands in a per-strand local frame. The
computation can be imagined as first making γa’s root coinciden-
tal with γb’s root, then computing per-vertex displacements in the
local frame at γb’s root location. More formally, we have

Dα(γa,γb, i) = MT
nbt(γb)[(γa(i)−γb(i))− (γa(1)−γb(1))], (5)

where MT
nbt(γb) is the matrix that transforms world space coordi-

nates to the local frame at γb’s root location.

The second component, Dβ(γa, γb), represents the absolute dis-
placement in per-vertex local frames. To compute Dβ(γa, γb), we
need to first compute the per-vertex local frame defined by the nor-
mal, bi-normal and tangent along γb. [Bloomenthal 1990] provides
a method to compute such local frames along a space curve. Then
we can compute Dβ(γa, γb) as the per-vertex displacements repre-
sented in the per-vertex local frames,

Dβ(γa, γb, i) = MT
nbt(γb(i))(γa(i)− γb(i)), (6)

where MT
nbt(γb(i)) is the local frame defined by the normal, bi-

normal and tangent at the i-th vertex of γb.

Displacement Transfer. Displacement transfer works as fol-
lows. For each output strand γout in cluster Sout, we first com-
pute the displacement between its root position and the root of the
center strand γ̄out of Sout, and then find an input strand γin with
the most similar displacement with respect to the root of the center
strand γ̄in of Sin. Finally, we construct γout by linearly interpolat-
ing two different estimations using spatially varying interpolation
coefficients.

γout(i) =
ns − i
ns − 1

γoutα (i)+
i− 1

ns − 1
γoutβ (i), i = 1, . . . , ns (7)

Figure 4: A comparison of synthesized hairstyles without (left) and
with (right) vector field based refinement. The tangent field of the
hairstyle on the right is more spatially coherent. The input hairstyle
can be found in the middle of the third column in Figure 7.

where

γoutα (i) = γ̄out(i) + Mnbt(γ̄
out)Dα(γin, γ̄in, i) +

γout(1)− γ̄out(1)

γoutβ (i) = γ̄out(i) + Mnbt(γ̄
out(i))Dβ(γin, γ̄in, i). (8)

Here γoutα (1) guarantees the synthesized strand γout is rooted at
the prescribed location on the output scalp while γoutβ (ns) ensures
that the relative position between the tips of γin and γ̄in is actually
preserved between γout and γ̄out.

5.3 3D Vector Field Based Hair Refinement

The feature vector for each hair strand is stored spatially at its root
location while the strand represents a long and complex trajectory
and thus affects the appearance everywhere along this trajectory.
Furthermore, some hair strands are “coherent” across a distance
greater than that can be reflected in a feature map. For instance,
two hair strands, whose roots are not quite close to each other in
the feature map, could actually be “well aligned” in the 3D space
to form a continuous and smooth path which is visually longer than
any of them, as illustrated in Figure 5. To improve this type of spa-
tial coherence, we introduce a refining process that first computes a
3D vector field from initially synthesized hair geometry, then traces
updated hair strands from the vector field to replace the original
strands.

Strand A
Strand B

Visual appearance

Figure 5: Two spatially continuous hair strands could be viewed
as one longer hair strand.

We define a discrete vector field using a 3D grid embedded in the
scalp space described in Section 3. Let (i, j, k) denote the indices
of a grid cell located at the scalp space coordinates (ui, vj , wk);
ds denotes a small segment of any hair strand; T(ds) denotes the
tangent vector of ds; C(i, j, k) denotes the set of hair segments that
pass through the grid cell (i, j, k). The vector field is then computed
iteratively as follows.

v̄t(i, j, k) =

∑
ds∈C(i,j,k)

ωt(T(ds))T(ds)

‖
∑

ds∈C(i,j,k)
ωt(T(ds))T(ds)‖

, (9)

where ωt(v) = 0.5(v · v̄t−1(i, j, k) + 1) and v̄0(i, j, k) = 0.
In case there are no hair segments passing through a cell, the es-
timated vector there is also set to 0. Note that a hair strand can
be parameterized using its arc length from the root and the tangent

vector of any hair segment along the strand can be unambiguously
defined. Therefore, it is not necessary to employ structure tensors
as in [Paris et al. 2008].

The iteratively changing weighting scheme is aimed at outlier sup-
pression. It ensures that within each grid cell, the more different
the direction of a hair segment is from the average vector, the less it
will affect the final estimated vector. As we know, given a set of in-
consistent estimations of the vector within a grid cell, their average
vector is actually the least-squares solution. However, least-squares
solutions can be easily corrupted by outliers. It has been shown that
solutions from iteratively re-weighted least squares can asymptoti-
cally approach the optimal solution computed by a robust estimator
[Hampel et al. 1986]. In practice, the above estimation terminates
after two iterations because we found that more iterations did not
improve the visual results any more.

The creation of updated hair strands from the vector field is almost
the same as in previous work [Paris et al. 2004; Wei et al. 2005;
Paris et al. 2008]. Each hair strand is a streamline of the vector
field integrated using the Euler method. The integration starts from
its original root position. The actual vector field used for integration
is an interpolated version of the previously computed discrete field.
For a location not coincidental with the center of any of the grid
cells, the vector there is trilinearly interpolated from eight nearby
cells. The integration terminates when either the strand has reached
a predefined length, or it has reached a location where the interpo-
lated vector v̄ = 0. The predefined length is randomly sampled
from the input hairstyle in a region on the scalp surrounding the
root of the output strand.

Overall, this vector field based refinement improves the consistency
and continuity among nearby hair trajectories (Figure 4). Note that
a vector field whose grid spacing is too large can smooth out small
geometric features in the hair. An unnecessarily small grid spacing,
on the other side, not only increases the time complexity, but may
also leave artifacts unaffected by the refinement. Therefore, one
should choose a reasonably small grid size according to the feature
size of the input hairstyle (some typical values of the grid size are
given in the next section).

6 Results and Discussion

We have extensively experimented with our hair synthesis algo-
rithm. In Figures 1 and 6, we show several synthesized hairstyles
side-by-side with example hairstyles. All the synthesis results in
these figures were achieved without any user intervention. Note that
most of the input hairstyles were acquired using image-based meth-
ods while the others were manually created. The input hairstyles in
Figure 1 and 6(b) went through an initial cleanup stage as described
in the supplemental materials.

Implementation. Although a few parameters in our pipeline are
adjustable, we have found their typical values (as shown in Table 1)
that work for all the examples we have tested. Two parameters need
special attention during hair synthesis. First, using more hair hier-
archy levels has the effect of extracting higher-level trends from lo-
cal details and better grasp the spatial characteristics of global hair
flows. For simple hairstyles like the spiky one in Figure 6(d), two
scales can achieve good results. For all the other hairstyles in the
paper, we use three scales because of their complexity. Using more
than three scales does not visually improve the results in practice.
Second, the choice of the grid spacing of the 3D vector field should
match the complexity of hair geometry in the respective hierarchy
level. In our implementation, we use 0.02 for the coarsest level and
set the spacing in a finer level to be half of that in the coarser level.
Also, for the parameters in texture optimization, we simply use the
same settings as in [Kwatra et al. 2005]. Hairstyles in this paper

Symbol Description Typical values

nh number of hair hierarchy levels 2 to 3
k0 initial number of clusters 200
ε fitting error threshold 0.1 to 0.3
ns number of sample points 64
nf dimensionality of PCA subspace 16

∆2D feature map grid spacing 0.02
∆3D vector field grid spacing 0.02
δ integration step for hair growing 0.02

Table 1: Adjustable parameters and their typical values. Note that
we assume the radius of the virtual head is roughly 1.

are rendered in real time as anti-aliased polylines with single scat-
tering computed using [Marschner et al. 2003], diffuse and ambient
components computed using [Kajiya and Kay 1989] and shadows
computed using [Yuksel and Keyser 2008].

Quality and Performance. Our automatically synthesized hair-
styles are able to capture the essence of the spatial hair arrange-
ment as well as cluster oriented characteristics of the original exam-
ples. Meanwhile, our method ensures sufficient individuality. For
a hairstyle with about 100,000 strands, the overall synthesis time
is usually less than two minutes on a Pentium 4 3.0GHz processor
with 2GB memory. Hierarchical clustering accounts for about 50
percent of the time while texture optimization for the feature map at
the coarsest level and 3D vector field based refinement each takes
about 20 percent. Displacement transfer is rather fast. Note that
due to our hierarchical hair clustering, 2D texture synthesis is per-
formed only at a coarse resolution (typically lower than 100×100),
which significantly reduces the overall time complexity.

User-Controlled Synthesis. Our framework also allows users
to interactively control synthesis at both the global scale and per-
cluster scale to yield interesting effects. Based on hierarchical clus-
tering of hair strands, one can, for example, either modify the coars-
est level of the hair geometry generated using a feature map, or di-
rectly impose an arbitrary coarsest level, to control the global flow
of the synthesized hairstyle. We have implemented a stroke-based
GUI tool that emulates the function of a real comb and allows the
user to deform hair strands intuitively. Note that such hair comb-
ing tools are available in many existing modeling softwares, such
as Blender and 3D Studio Max. Nevertheless, our combing tool en-
ables detail-preserving editing by first applying detail-preserving
deformations to the strands in the coarsest level and then trans-
ferring original finer-level details onto the edited coarsest level.
Detail-preserving deformation of hair strands in the coarsest level
is achieved with the technique described in “Gradient Domain Edit-
ing of Deforming Mesh Sequences” [Xu et al. 2007] (section 3.1).
The user can also transfer detailed geometric variations from one
hairstyle to another. This is done by retaining the original coarsest
level of the second hairstyle and transferring finer-level details from
the first one. To ensure a thorough high-frequency detail transfer,
we further smooth the geometry of the individual hair strands at the
coarsest level of the first hairstyle. Examples of these types of user-
controlled synthesis can be found in Figure 7, where compelling
detail transfer results have been achieved.

Comparison with Conventional 2D/3D Synthesis. We have
compared our synthesis method with conventional 2D and 3D syn-
thesis algorithms. Conventional 2D synthesis would directly per-
form feature map synthesis at the finest level of the hierarchy and
reconstructs the geometry of the hair strands using the PCA coef-
ficients from the synthesized feature map. A comparison between
pure 2D synthesis and our method can be found in Figure 8 (Top).
It can be seen that conventional 2D synthesis cannot well preserve

(a) Puffy (b) Wavy

(c) Curly (d) Spiky

Figure 6: Hair synthesis results from various examples. In each group, the input is on the left while the output on the right. The inset shows
the respective feature map at the coarsest level. In addition to synthesizing hairstyles acquired using real images ((a) and (b)), our algorithm
can also synthesize manually created ones ((c) and (d)).

the wisp structures and their spatial arrangement in the original in-
put hairstyle.

We have also experimented with conventional 3D synthesis where
the tangent field of the input hairstyle is taken as an input example
for 3D vector field synthesis. Streamlines traced from the synthe-
sized 3D vector field collectively form the synthesized hairstyle.
We generalize texture optimization [Kwatra et al. 2005] to 3D
vector field synthesis by using 3D neighborhoods and considering
the three coordinates of the vectors as color channels. Since hair
strands are always grown from the scalp, we organize the 3D hair
volume as a set of 2D curved slices using our hair volume parame-
terization and synthesize the vectors in the slice closest to the scalp
first. A comparison between this type of 3D vector field synthesis
and our method can be found in Figure 8 (Bottom). It can be seen
that conventional 3D synthesis cannot preserve the wisp structures
and other large-scale features either. In addition, it is roughly one
to two orders of magnitude slower than our method.

Limitations. Our method is not directly applicable to draped long
hairstyles. When performing the 3D vector field based refinement
for such hairstyles, our scalp space parameterization would not be
appropriate any more since the projection of certain hair vertices
onto the unit sphere will approach the singularity of our parameter-
ization at the south pole. One possible solution is to use a regular
3D grid in the world space rather than in the curved scalp space
for any vector field oriented computation. Another limitation is
that our current implementation for detail transfer between different
hairstyles would introduce scale distortions in the transferred de-
tails when hair length of the involved hairstyles has significant dif-
ference. This problem can be potentially fixed using example-based
curve synthesis [Hertzmann et al. 2002] to generate hair strands
with both desired style and length. Finally, due to the trade-off of

the vector field grid spacing (as described in Sec. 5.3), it would be
hard for our method to achieve good results on hairstyles with tiny
loops or dreadlocks.

7 Conclusions and Future Work
We have presented a hierarchical hair synthesis framework that,
given an input hairstyle, can create a novel one with a statistically
similar spatial arrangement of hair strands and geometric details. It
has effective algorithmic components that efficiently support both
2D and 3D aspects of hairstyles. Based on our automatic hair syn-
thesis method, we have also developed simple mechanisms for user-
controlled hair synthesis and editing. We have demonstrated the
quality of both automatic and user-controlled hair synthesis.

An intriguing item worth further investigation is that our hierarchi-
cal hair clustering algorithm might be able to bridge the gap be-
tween manual creation of hair models and image-based methods
so that captured hair data could be clustered first to facilitate any
follow-up editing performed by artists. Creating novel hairstyles
by editing captured ones could dramatically reduce hair model-
ing costs. We have already partially demonstrated this possibility
through our combing tool. A closely related research topic is how
to simultaneously exploit both the 2D and 3D nature of hairstyles
to conveniently and effectively perform hair editing.

Acknowledgements
We would like to thank Cem Yuksel, Sylvain Paris and colleagues
for sharing their geometric hair data, Matt Scott for video dubbing,
Steve Lin and Daisy Hao for help on writing, and the anonymous
reviewers for their valuable suggestions. Kun Zhou was partially
supported by NSFC (No. 60825201), the 973 program of China
(No. 2009CB320801) and NVIDIA.

(a) curly + long straight (b) short spikes + wavy (c) puffy + straight (d) combing

Figure 7: Hair detail transfer (in (a),(b),(c)) and combing (in (d)) results. In the first three columns, the details from the hairstyles in the top
row are transferred to the coarsest level of the hairstyles in the middle row to produce the final results in the bottom. In the rightmost column,
three different hairstyles (as marked by dots in the first three columns) are edited using our detail-preserving comb.

References

ASHIKHMIN, M. 2001. Synthesizing natural textures. In ACM
Symposium on Interactive 3D Graphics, 217–226.

BHAT, P., INGRAM, S., AND TURK, G. 2004. Geometric texture
synthesis by examples. In Eurographics Symposium on Geome-
try Processing, 41–44.

BLOOMENTHAL, J. 1990. Calculation of reference frames along a
space curve. Graphics Gems, 567–571.

BONET, J. D. 1997. Multiresolution sampling procedure for anal-
ysis and synthesis of texture images. In Proc. of SIGGRAPH,
361–368.

CHEN, L.-H., SAEYOR, S., DOHI, H., AND ISHIZUKA, M. 1999.
A system of 3D hair style synthesis based on the wisp model.
The Visual Computer 15, 4, 159–170.

CHOE, B., AND KO, H.-S. 2005. A statistical wisp model and
pseudophysical approaches for interactive hairstyle generation.
IEEE Transactions on Visualization and Computer Graphics 11,
2, 160–170.

COHEN-STEINER, D., ALLIEZ, P., AND DESBRUN, M. 2004.
Variational shape approximation. ACM Trans. Graph. 23, 3,
905–914.

DALDEGAN, A., THALMANN, N., KURIHARA, T., AND THAL-
MANN, D. 1993. An integrated system for modeling, animat-
ing and rendering hair. Computer Graphics Forum (Eurograph-
ics’93) 12, 3, 211–221.

EFROS, A., AND FREEMAN, W. 2001. Image quilting for texture
synthesis and transfer. In SIGGRAPH ’01, 341–346.

EFROS, A., AND LEUNG, T. 1999. Texture synthesis by non-
parametric sampling. In ICCV ’99, 1033–1038.

HADAP, S., AND MAGNENAT-THALMANN, N. 2000. Interactive
hair styler based on fluid flow. In Computer Animation and Sim-
ulation 2000. Proceedings of the 11th Eurographics Workshop.

HAMPEL, F., ROUSSEEUW, P., RONCHETTI, E., AND STAHEL,
W. 1986. Robust Statistics. John Wiley & Sons, New York.

HAN, C., RISSER, E., RAMAMOORTHI, R., AND GRINSPUN,
E. 2008. Multiscale texture synthesis. ACM Transactions on
Graphics 27, 3, 51.

Figure 8: Two comparisons with alternative methods. Top row:
synthesized tangled hairstyles using conventional 2D texture syn-
thesis (left) and our method (right). Bottom row: synthesized spiky
hairstyles using 3D vector field synthesis (left) and our method
(right). The original tangled and spiky hairstyles can be found in
Figures 1 and 6 respectively.

HERTZMANN, A., JACOBS, C., OLIVER, N., CURLESS, B., AND
SALESIN, D. 2001. Image analogies. In SIGGRAPH ’01, 327–
340.

HERTZMANN, A., OLIVER, N., CURLESS, B., AND SEITZ, S.
2002. Curve analogies. In Eurographics Workshop on Render-
ing, 233–246.

KAJIYA, J. T., AND KAY, T. L. 1989. Rendering fur with three
dimensional textures. Comput. Graph. 23, 3, 271–280.

KIM, T.-Y., AND NEUMANN, U. 2002. Interactive multiresolution
hair modeling and editing. In SIGGRAPH ’02, ACM, New York,
NY, USA, 620–629.

KOPF, J., FU, C.-W., COHEN-OR, D., DEUSSEN, O., LISCHIN-
SKI, D., AND WONG, T.-T. 2007. Solid texture synthesis from
2D exemplars. ACM Transactions on Graphics (Proceedings of
SIGGRAPH 2007) 26, 3, 2:1–2:9.

KWATRA, V., SCHÖDL, A., ESSA, I., TURK, G., AND BOBICK,
A. 2003. Graphcut textures: Image and video synthesis using
graph cuts. ACM Transactions on Graphics 22, 3, 277–286.

KWATRA, V., ESSA, I., BOBICK, A., AND KWATRA, N. 2005.
Texture optimization for example-based synthesis. In SIG-
GRAPH ’05, ACM, New York, NY, USA, 795–802.

LAGAE, A., DUMONT, O., AND DUTRE, P. 2005. Geometry
synthesis by example. In Proceedings of the International Con-
ference on Shape Modeling and Applications, 176–185.

LAI, Y.-K., HU, S.-M., GU, D. X., AND MARTIN, R. 2005.
Geometric texture synthesis and transfer via geometry images. In
Proceedings of the 2005 ACM Symposium on Solid and Physical
Modeling, 15–26.

LEFEBVRE, S., AND HOPPE, H. 2005. Parallel controllable texture
synthesis. ACM Transactions on Graphics 24, 3, 777–786.

LEFEBVRE, S., AND HOPPE, H. 2006. Appearance-space texture
synthesis. ACM Transactions on Graphics 25, 3, 541–548.

LIANG, L., LIU, C., XU, Y., GUO, B., AND SHUM, H.-Y. 2001.
Real-time texture synthesis using patch-based sampling. ACM
Trans. Graphics 20, 3, 127–150.

LLOYD, S. P. 1982. Least squares quantization in PCM. IEEE
Transactions on Information Theory 28, 2, 129–137.

MARSCHNER, S. R., JENSEN, H. W., CAMMARANO, M., WOR-
LEY, S., AND HANRAHAN, P. 2003. Light scattering from hu-
man hair fibers. ACM Trans. Graph. 22, 3, 780–791.

PARIS, S., HECTOR M. BRICE N., AND SILLION, F. X. 2004.
Capture of hair geometry from multiple images. In SIGGRAPH
’04, ACM, New York, NY, USA, 712–719.

PARIS, S., CHANG, W., KOZHUSHNYAN, O. I., JAROSZ, W.,
MATUSIK, W., ZWICKER, M., AND DURAND, F. 2008.
Hair photobooth: geometric and photometric acquisition of real
hairstyles. In SIGGRAPH ’08, ACM, New York, NY, USA, 1–9.

PRAUN, E., FINKELSTEIN, A., AND HOPPE, H. 2000. Lapped
textures. In SIGGRAPH ’00, 465–470.

TAKAYAMA, K., OKABE, M., IJIRI, T., AND IGARASHI, T. 2008.
Lapped solid textures: filling a model with anisotropic textures.
In SIGGRAPH ’08, ACM, New York, NY, USA, 53.

TURK, G. 2001. Texture synthesis on surfaces. In SIGGRAPH’01,
347–354.

WARD, K., BERTAILS, F., KIM, T.-Y., MARSCHNER, S. R.,
CANI, M.-P., AND LIN, M. C. 2007. A survey on hair mod-
eling: styling, simulation, and rendering. IEEE Transactions on
Visualization and Computer Graphics 13, 2, 213–234.

WATANABE, Y., AND SUENAGA, Y. 1992. A trigonal prism-based
method for hair image generation. IEEE Computer Graphics and
Applications 12, 1, 47–53.

WEI, L.-Y., AND LEVOY, M. 2000. Fast texture synthesis using
tree-structured vector quantization. In SIGGRAPH ’00, ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA,
479–488.

WEI, L.-Y., AND LEVOY, M. 2001. Texture synthesis over arbi-
trary manifold surfaces. In SIGGRAPH’01, 355–360.

WEI, Y., OFEK, E., QUAN, L., AND SHUM, H.-Y. 2005. Mod-
eling hair from multiple views. ACM Transactions on Graphics
24, 3, 816–820.

XU, W., ZHOU, K., YU, Y., TAN, Q., PENG, Q., AND GUO, B.
2007. Gradient domain editing of deforming mesh sequences.
In SIGGRAPH ’07: ACM SIGGRAPH 2007 papers, ACM, New
York, NY, USA, 84.

YU, Y. 2001. Modeling realistic virtual hairstyles. In Proceedings
of Pacific Graphics, 295–304.

YUKSEL, C., AND KEYSER, J. 2008. Deep opacity maps. Com-
puter Graphics Forum (Proceedings of EUROGRAPHICS 2008)
27, 2.

ZHOU, K., HUANG, X., WANG, X., TONG, Y., DESBRUN, M.,
GUO, B., AND SHUM, H.-Y. 2006. Mesh quilting for geometric
texture synthesis. ACM Transactions on Graphics (Proceedings
of SIGGRAPH 2006) 25, 3.

ZHOU, H., SUN, J., TURK, G., AND REHG, J. 2007. Terrain
synthesis from digital elevation models. IEEE Transactions on
Visualization and Computer Graphics 13, 4, 834–848.

	1 Introduction
	2 Related Work
	3 Scalp Space
	4 Hierarchical Hair Clustering
	4.1 Energy Function
	4.2 Partitioning
	4.3 Fitting
	4.4 Adaptive Clustering

	5 Hierarchical Cluster-Based Synthesis
	5.1 Feature Map Synthesis
	5.2 Cluster Oriented Detail Transfer
	5.3 3D Vector Field Based Hair Refinement

	6 Results and Discussion
	7 Conclusions and Future Work

