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Abstract—We present a real-time algorithm to render
all-frequency radiance transfer at both macro-scale and
meso-scale. At a meso-scale, the shading is computed on a
per-pixel basis by integrating the product of the local inci-
dent radiance and a bidirectional texture function. While
at a macro-scale, the precomputed transfer matrix, which
transfers the global incident radiance to the local incident
radiance at each vertex, is losslessly compressed by a
novel biclustering technique. The biclustering is directly
applied on the radiance transfer represented in a pixel
basis, on which the BTF is naturally de�ned. It exploits
the coherence in the transfer matrix and a property of
matrix element values to reduce both storage and runtime
computation cost. Our new algorithm renders at real-
time frame rates realistic materials and shadows under
all-frequency direct environment lighting. Comparisons
show that our algorithm is able to generate images that
compare favorably with reference ray tracing results, and
has obvious advantages over alternative methods in storage
and preprocessing time.

Index Terms—Illumination, Rendering, Shadow Algo-
rithm, Graphics Hardware.

I. INTRODUCTION

Synthesizing realistic images requires faithful simu-
lation of the interactions of light and matter at all

relevant scales, which is very challenging due to the large
representation gaps between these scales. Many existing
rendering techniques are limited to effects at a single
scale.

Based onprecomupted radiance transfer[2], or PRT,
Sloan et al. propose bi-scale radiance transfer [3] to
model radiance transfer at two scales. The main idea
is to decompose the radiance transfer function into a
global part, which is represented in a macro-scale and
coarsely sampled at each vertex, and a local part, which
is represented in a meso-scale, densely sampled at each
pixel and mapped over the object. The bi-scale transfer is
then combined at run time to render self-shadowing and
interre�ection effects at both scales. Due to the low-order
spherical harmonics(SH) used to represent lighting and

transfer, the method is limited to very blurry shadows and
matte materials. Sometimes it is not suf�cient to reveal
the �ne details of the object surface and the relationship
between the lighting and different parts of the object, as
Fig. 1(a) shows.

PRT has also been extended to all-frequency illumi-
nation, by representing the lighting and transfer with
wavelets [4]–[7], or spherical radial basis functions [8].
These techniques, however, compute per-vertex shading
and would be impractically expensive if the �ne details
such as in Fig. 1(c) are to be rendered.

We propose a real-time algorithm for all-frequency bi-
scale radiance transfer rendering. The algorithm renders
hard and soft shadows at both macro-scale and meso-
scale(Fig. 1(b)), and supports arbitrary materials.

The main challenge of all-frequency bi-scale radiance
transfer is the precomputation and storage of the macro-
scale transfer function, which is de�ned in a 6D space
formed by global incident direction, local incident di-
rection, and surface position. To capture all-frequency
occlusion and re�ection effects, each dimension has
to be sampled at a reasonable rate. This makes the
transfer function very costly to be precomputed, stored
or manipulated at run-time.

We represent the light and transfer in a pixel basis,
and compress the macro-scale transfer matrix by a novel
biclustering technique, which reduces both the storage
and runtime computation cost and enables real-time
rendering of all-frequency bi-scale radiance transfer.

A pixel basis is poor in representing smooth functions,
as pointed out by Ng et al. [4]. In our case, however,
the transfer function is not a smooth one, because
the re�ectance term is decoupled from the macro-scale
transfer function, and the transfer function is determined
by visibility, rotation and down-sampling. As a result, the
the transfer function is a coarsely discretized spherical
function that tends to form blocks(Section IV-A). We
exploit this property in biclustering(Section IV-B, IV-C)
to losslessly compress the transfer function.

Compared with existing transfer matrix compression
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Fig. 1. A Stanford bunny with a bumpy surface illuminated by environment lighting. Note how our all-frequency algorithmmore faithfully
captures the shadowing effects at both global and local scales, as compared with the low-frequency bi-scale algorithm [1].

techniques such as clustered principal component anal-
ysis(CPCA) [1], [6], biclustering takes advantage of
speci�c properties of the transfer matrix, and it also
better adapts to different levels of available coherence.
As a result, a more ef�cient compression is achieved, as
will be demonstrated in Section VI.

II. RELATED WORK

Local Effects: In computer graphics, local lighting
effects had been represented by textures, bidirectional re-
�ectance distribution functions(BRDFs), height �elds [9]
or bump maps. The bidirectional texture function(BTF)
[10], which is a 6D function that encapsulates appear-
ance that varies spatially and with light and view direc-
tion, is introduced to represent more general local effects.
Hardware based techniques have been developed( [11],
[12]) for full 6D BTFs rendering. Lower dimensional
alternatives have also been introduced( [9], [13], [14])
to reduce the storage and rendering cost. BTF capturing(
[10], [15]), synthesis( [12], [16]), and editing tools( [17],
[18]) have also been proposed, and a wide variety of
BTFs are available for representing different kinds of
material appearance. See the survey by Müller et al. for
a good overview [19].

More general representations include the shell texture
function [20], view-dependent displacement map [21],
and generalized displacement maps [22]. These repre-
sentations, though being able to capture more general
local effects such as subsurface scattering and �ne-
scale silhouettes, are also more expensive to store and/or
render, and are not as widely used as BTFs.

Recently, Sloan et al. proposed to �t the precomputed
transfer function of local features by zonal harmonics,
which can then be rotated ef�ciently at run time for
multiplication with the global incident lighting [23],
represented in spherical harmonics.

These methods focus on re�ectance representation and

rendering of lighting effects caused by local radiance
transfer.

Wang et al. render shadows at both scales [24] by
introducing a 4D meso-structure distance function(MDF)
representation. It is limited to simple lighting sources
like point lights, since rendering is based on shadow
mapping and accumulation over complex light sources
is not affordable for interactive applications.

Global Effects:Realistic rendering of global effects
under complex lighting requires integration over the inci-
dent directions, which is expensive if conducted directly.
Sloan et al. solve the light integration problem by an of-
�ine tabulation of an object's response to low-frequency
lighting [2], represented by SH, and turn the run-time
integration into a linear combination of the responses to
each SH basis lighting. Exploiting the coherence among
vertices, compression methods are introduced using PCA
[25] or CPCA [1]. We take a different approach for
both transfer representation and compression and achieve
higher rendering quality at the same storage cost.

Traditional PRT has been extended to �ne, repetitive
local details. By combining the local and global radiance
transfer [3], self-shadowing and interre�ection effects
at both macro-scale and meso-scale can be rendered
in realtime, yet only under low-frequency environment
lighting. Our method extends the low-frequency bi-scale
transfer to all-frequency, and supports both accurate
shadows and complex materials.

PRT has also been extended to handle all-frequency
shadows by using a non-linear wavelet approximation
[4], albeit with either �xed lighting or viewpoint. This
limitation has been overcome by factoring the transfer
function into a visibility term and a re�ectance term
and computing at run time a wavelet triple product of
lighting, visibility and re�ectance to yield the outgoing
radiance [5]. A similar approach can be dif�cult to
apply to our transfer matrix, since unlike the re�ectance
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function, the rotation from a global coordinate frame to
a local coordinate frame for each vertex is de�ned in 6D
space, and is still too expensive to precompute.

Another dimensionality reduction technique is based
on decomposition of the BRDF, which has been used
in many all-frequency PRT algorithms( [6]–[8], [26],
[27]). It is not clear how this technique could be used
in our case, since the re�ectance function has already
been decomposed to meso-scale and the rotation term
in the transfer function depends on the surface location,
making the decomposition infeasible.

Xu et al. [28] exploit the coherence in directions
of both lighting, visibility and BRDF, corresponding
to the coherence in the rows of our transfer matrix,
and enables object rotation in all frequency rendering
of dynamic scenes and on-the-�y BRDF editing. Our
method exploits coherence in both rows and columns
and can tackle transfer matrix of higher dimensionality,
which enables bi-scale radiance transfer.

Garg et al. [29] leverage the symmetry and data-
sparseness of the transfer matrix and represent it using
hierarchical tensors. The 4th-order tensor representing
the light transport is recursively divided into 16 chil-
dren until the node can be represented using rank-1
approximation. The nodes in that hierarchy are sub-
blocks formed by neighboring rows and columns. The
characteristic of the transfer matrix in our case is differ-
ent from theirs, which will be shown in Section IV-A,
due to the asymmetry of the input and output of the
transfer. Thus we take a different approach to compress
the transfer matrix.

Recently, an all-frequency shadow algorithm for dy-
namic scenes has been proposed [30]. Global incident
radiance is approximated by a small number of area
light sources, and extended convolution shadow maps
[31] are used to render the shadows generated by each of
these light sources. No precompuatation is needed for the
visibility and dynamic scene objects can be supported.
The algorithm, however, focuses on shadow rendering
instead of local re�ectance. Integration of the BRDF
across the light source domain is not suppported, and
the BRDF in the direction of the center of each area
light is evaluated to weight the contribution. It is not
clear if complex materials such as shown in this paper
can be supported.

Integration of meso-scale surface details into the PRT
framework has recently been shown possible [32] by
exploiting a clustered piecewise constant representation
for the visibility and lighting. Precomputation of this
representation for the 4D BRDF, however, is already pro-
hibitively expensive so that it is evaluated dynamically at
the cluster centers. In our approach, the global radiance
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Fig. 2. Transfer the global incident radianceL to the local coordinate
frame ofp, yielding the local incident radianceL �

p . Per-pixel shading
is then computed by integrating the product of BTF andL �

p .

transfer matrix are compressed instead of approximated,
and the local response encoded in the 6D BTF is
precisely rendered.

Biclustering: Biclustering is a technique which has
been extensively used in biological data analysis to �nd
submatrices where the genes exhibit highly correlated
activities for every condition, For more details, see a
recent survey by Madeira and Oliveira [33]. We apply
the idea to transfer matrix compression and develop a
novel algorithm for bicluster construction and real-time
rendering.

III. OVERVIEW AND TERMINOLOGY

We use math italics for scalars, 3d points or vec-
tors (e.g., x, p), boldface italics for higher dimen-
sional vectors (e.g.,L ), and sans serif for matrices
or biclusters(e.g.,T, B). A submatrix is noted as
T[j 1; : : : ; j r ; k1; : : : ; kl ], where j 1; : : : ; j r are the row
indices andk1; : : : ; kl are the column indices.

As in low-frequency bi-scale rendering [3], we decou-
ple the coarse (PRT) and �ne (BTF) radiance transfer in
precomputation and combine the transfer at both scales
at run-time. In a preprocess, we compute and store the
matrix that transfers the source lighting, represented in
the global coordinate frame, into the local frame of each
vertex. Both visibility and rotation are incorporated into
the transfer matrix, and macro-scale shadowing effects
are captured.

As depicted in Fig. 2, the global incident radiance
function L is transferred to each vertex by a multiplica-
tion with the transfer matrix:

L �
p = TpL (1)

We use the vector form(such asL ) to indicate a spherical
function(such asL(! i )) represented in any basis de�ned
on the sphere. And `*' is used to emphasize thatL �

p
is de�ned in the local coordinate frame ofp. Tp is the



IEEE TRANSACTIONS ON VISUALIZATION & COMPUTER GRAPHICS 4

transfer matrix sampled atp, which will be explained in
more detail below.

It is sometimes more convenient to use the compact
form of Eq. (1), which simply packs theL �

p vectors for
all vertices in the scene into a single vectorL � :

L � = TL (2)

The meso-scale transfer is computed per pixel to
capture the �ner variations of the meso-structures on
object's surface, as shown in Fig. 2. More precisely, for
each pixelx, shading is computed as

B (x; e) =
X

d

b(u; e; d)L � (x; d) = b(u; e) � L � (x) (3)

whereB (x; e) is the outgoing radiance,b is the 6D BTF,
u is a 2D texture coordinate ande is the view direction,
d is the direction of the incident radiance. Note thate
and d are both de�ned in the local coordinate frame
of the point corresponding tox. L � (x; d) is the local
incident radiance at pixelx. The last part of Eq. (3) is a
reformulation in vector form. The per-pixel local incident
radiance vectorL � (x) can be obtained by interpolating
L �

p de�ned at each vertex.
We choose the pixel basis to represent both lighting

and transfer. In other words, each component ofL
is simply the sampled incident radiance value of the
corresponding pixel on the direction cubemap.

Note that Eq. (3) requiresL � (x; d) to be sampled at the
same set of directions asb(u; e; d). Assuming the BTF
is sampled atM incident radiance directions,L � (x) is
M -dimensional, and so isL �

p. The light sourceL(! i ), on
the other hand, is often discretized in a higher resolution
(N sample directions,N > M ). The vertex transfer
matrix Tp is a M � N transfer matrix, with its element
(j; k ) representing the contribution of the global incident
radiance at directionk to the local incident radiance at
directionj . For a scene withn vertices, theT is Mn � N .

The transfer matrixT is very large, due to the high-
dimensional nature of the transfer function. For example,
for a moderate scene con�guration with 15k vertices,
6 � 32 � 32 source lighting directions and8 � 8 BTF
lighting sample directions,T has nearly 6 billion entries.
Though sparse, it is still quite cumbersome to store or
relight with.

To compressT and accelerate run-time multiplication,
we decompose it into a number of submatrices, in a
way that minimizes the computation cost of Eq. (2). The
decomposition, which will be described in detail in the
next section, is conducted as a preprocess and is referred
to as the biclustering of the transfer matrix.

(a) A small patch and a sample vertex, together with
a particular local incident direction

(b) Transfer matrix and the corresponding row

Fig. 3. An example of transfer matrix construction. A small patch
of 76 vertices is used to show the process.

IV. PRECOMPUTATION

In a preprocess, we construct the transfer matrixTp

at each vertex to obtain the overall transfer matrixT, on
which a greedy iterative search is performed to yield a
compact bicluster representation.

A. Transfer Matrix Construction

For a given local incident directiondj at vertexp, the
transfer matrix element(Tp) jk represents the contribu-
tion of the global incident directiondk . In other words,
the element indicates how much of the global incident
radiance atdk would reach the local incident radiance
directiondj .

The construction of the transfer matrix is depicted in
Fig. 3. We rasterize a high resolution visibility hemi-
cube at each vertexp, and down-sample it to the same
resolution as the environment lighting. Each pixel of the
cubemap corresponds to an incident radiance direction.
These directions are iterated to evaluate their contribu-
tion to each local incident radiance directiondj .

At each incident directiondk , we �rst check the
visibility, and totally blocked directions are bypassed.
We �nd the nearest local incident radiance directiondj

and set(Tp) jk to the visibility value atdk .
Note that the local incident radiance directionsdj are

de�ned in p's local coordinate frame and to �nd the
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nearestdj for global incident radiance directiondk we
need to rotate all the local incident radiance directions
to the global coordinate frame.

Fig. 3(a) shows a particular local incident radiance
direction dj at vertexp with the contributing cubemap
directions shown in red. These contributing directions
correspond to elements in thej th row of the transfer
matrix. After all vertices are processed, we pack the
transfer matricesTp to obtain the overall transfer matrix.
We show the transfer matrix for this example in Fig. 3(b),
and the corresponding row for the direction in Fig. 3(a)
is highlighted in red.

Due to the down-sampling, the visibility at each pixel
can have values other than0 and 1. Generally, if we
perform2m � 2m down-sampling, the number of possible
visibility values is22m + 1 .

One alternative representation for the radiance transfer
would be to store the down-sampled visibility vectors
and the rotation matrix as reshuf�ing vectors. This,
however, swaps the order of down-sampling and rotation,
and the low sampling rate of the rotation will introduce
noticeable rendering artifacts.

From the small example in Fig. 3, we see two prop-
erties of the transfer matrix. First, the transfer matrix is
very sparse. Actually, only0:69% of the elements are
non-zero. This can be easily understood: for a given
local incident radiance direction, only a small number
of directions on the source lighting cubemap may con-
tribute. The sparsity alone, however, still does not make
the transfer matrix tractable, since there are still tens of
millions of entries to be stored and multiplied with the
incident radiance at runtime.

Second, we see regularity in the distribution of the
non-zero entries - they tends to form blocks. This regu-
larity is due to the structure in visibility and the distri-
bution of normal directions of vertices. Note that unlike
in the transfer matrix between symmetric incident and
exitant light �eld, where the matrix entries tend to form
continuous sub-blocks that can be well approximated
using rank-1 factors [29], the ”blocks” here might be
discontinuous, since the transfer is between the incident
2D environment lighting and exitant 4D surface light
�eld and we do not take inter-re�ections into account.
This kind of regularity inspires us to use a biclustering
technique to exploit the coherence in arbitrary rows and
columns. Unlike CPCA, which exploits the coherence
between elements of �xed size(the rows), we use biclus-
ters, whose size can adapt to the available coherence.
This, joined with exploiting the limited number of pos-
sible matrix entries, makes it possible for us to develop
a technique that provides higher compression rates than
existing techniques such as CPCA and wavelet.

B. Bicluster

The most straightforward way to exploit the coherence
in the transfer matrix would be to extract sub-matrices
having constant entries. This simple clustering approach
however tends to yield a large number of very small
clusters and we instead seek a more general representa-
tion for the coherence, and we found the biclustering
technique that is extensively used in biological data
analysis is very suitable for our purpose.

We base our algorithm on a very simple observation.
Suppose we have a submatrix ofT formed by selecting
the j 1; j 2; : : : ; j r rows and thek1; k2; : : : ; kl columns
from T, noted asT[j 1; j 2; : : : ; j r ; k1; k2; : : : ; kl ]. If each
column of the submatrix is composed of elements of a
constant value:

T j 1 km = T j 2 km = � � � = T j r km , tm ; 8m 2 f 1; 2; : : : ; lg
(4)

then we have

T[j 1; : : : ; j r ; k1; : : : ; kl ]L [k1; : : : ; kl ] = [

r scalars
z }| {
a : : : a ]T ;

a = t1L k1 + t2L k2 + � � � + t lL k l : (5)

The submatrix that satis�es Eq. (4) can be represented
as a constant column bicluster, or simply bicluster.
And we call such a submatrix abicluster submatrix.
A bicluster is determined by the row indices and the
column indices of the submatrix, plus the values of each
column t1; t2; : : : ; t l .

Given a biclusterB[j 1; : : : ; j r ; k1; : : : ; kl ; t1; : : : ; t l ]
belongs to aMn � N transfer matrix, we can de�ne
its multiplication with aN vectorL

(BL ) j =
� P l

m=1 tmL km if j 2 f j 1; j 2; : : : ; j r g
0 otherwise

j = 1 ; 2; : : : ; Mn; (6)

yielding a M � n vector. Note we only needl �oating
point multiplications andl � 1 additions, as well asr
additions to accumulate the resulting vector of Eq. (6).
We de�ne thecostof a bicluster as

W (B) = r + 2 l � 1; (7)

re�ecting the number of FLOPs involved in the bicluster
multiplication with B.

By decomposing the transfer matrix into bicluster
submatrices, we can obtain itsbicluster representation.
Notice that an1 � 1 submatrix ofT can be represented
by a smallest bicluster described by three scalars. This
guarantees the existence of a bicluster representation
for any givenT. What we need though is an optimal
biclustering of the transfer matrix that minimizes the run-
time computation cost.
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C. Transfer Matrix Biclustering

Given the transfer matrixT, the biclustering ofT is a
set of biclustersBi that satis�es

TL �
X

i

Bi L ; 8L (8)

We want to �nd the biclustering that minimizesP
i W (Bi ).
It has been shown that such a biclustering of a matrix

is NP-complete [33]. In this section, we describe a
greedy iterative algorithm for transfer matrix bicluster-
ing.

Qualitatively, when possible, we want to look for
larger biclusters, which provide higher reduction in com-
putation and storage. However, looking for submatrices
that strictly satisfy Eq. (4) tends to yield very small
biclusters, weakening the effectiveness of biclustering.
An important observation is that we can decompose
any submatrix into a bicluster submatrix and a residual
submatrix. Below is an example.
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This allows us to �nd a larger bicluster submatrix,
paying the price that the additional non-zero elements
in the residual submatrix should be handled in later
iterations. But that is a reasonable trade-off as long as
we can keep the number of non-zero elements in the
residual submatrix small.

We start from a randomly chosen element, which is
a 1 � 1 bicluster submatrix itself, then iteratively try
to insert(delete) rows or columns into(from) the current
bicluster submatrix. Every insert or delete operation
produces a new bicluster submatrix that changes the total
computation required by the matrix-vector multiplica-
tion(Eq. (8)). We evaluate the changes and select the
operation that reduces the computation most.

Operations are performed iteratively to improve the
current bicluster submatrix until no more computation
reduction is possible. As a bicluster is produced, the
corresponding submatrix is subtracted from the transfer
matrix. The algorithm terminates when all the remaining
elements in the transfer matrix become zeroes.

The most important issue is how to evaluate the
computational change that is related with a particular
submatrix and its bicluster representation. For a given
r � l submatrix M and its bicluster representationB,
the �oating point operations related to the submatrix
is 2nnz(M), where thennz(M) is the number of non-
zero elements ofM. This accounts for a per-element
multiplication and addition that are involved in the

Algorithm 1 Pseudo code for transfer matrix biclustering
Input : transfer matrixT
Output : f Bi g, a biclustering of
T

1: Tc  T.
2: if nnz(Tc) = 0 then
3: terminate
4: end if
5: Randomly choose a non-zero element(Tc) jk

6: Tb  Tc[j ; k] f initialed as an1 � 1 matrixg
7: � Wc  � W (Tb)
8: for all possible operationf do
9: if � W (f (Tb)) > � Wc then

10: � Wc  � W (f (Tb))
11: f c  f
12: end if
13: end for
14: if � Wc = � W (Tb) then
15: OutputTb's corresponding bicluster
16: Tc  Tc � Tb

17: go to 2
18: else
19: Tb  f c(Tb)
20: go to 7
21: end if

matrix-vector multiplication. The operations involved in
the corresponding bicluster multiplication isW (B) =
r + 2 l � 1. If a residual submatrix exists, then every
non-zero element in the residual submatrixMR requires
another addition and multiplication. Thus, the change in
computation cost can be evaluated as

� W (M) = 2nnz( M) � (r + 2 l � 1) � 2nnz(MR) (9)

� W (M) is a measurement of the change of the required
FLOPs due to representation transfer. It can be either
negative or positive.

We list the pseudo code for transfer matrix biclustering
in Algorithm 1. Note that for “possible operation” in
line 8, we refer to the insertion of a new row/column
to the current bicluster matrix or the deletion of an
existing row/column from it. For deletions, the corre-
sponding non-zero elements in the residual submatrix
are absorbed. Note thatTb is usually smaller thanTc

and the matrix subtraction in line 16 means subtracting
the elements ofTb from the corresponding elements of
Tc.

V. RENDERING

Rendering is divided into per vertex computation and
per pixel computation, corresponding to macro-scale
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transfer and meso-scale transfer, respectively.
We take the cubemap representation of the environ-

ment lighting as the input light vectorL , perform the
bicluster multiplications and accumulate the results to
calculate

P
i Bi L . Each multiplication is computed via

Eq. (6). The resulting incident radiance vector,L � , is
packed into the vertex buffer.

Per pixel computation is conducted on the GPU
according to Eq. (3). In a pixel shader, we take the
interpolated vertex data as the per-pixel incident radiance
vectorL �

i . We also obtain the view direction and texture
coordinate, which are then used to lookup the BTF
vector b(u; e). Then a simple dot productb(u; e) � L �

i
is performed to yield the shading at the corresponding
pixel.

Current graphics hardware has a limitation on the
number of available pixel input registers, and we cannot
process all the vertex data in a single pass. Multi-pass
rendering has to be conducted and alpha-blending is used
to add up the results of each pass.

VI. I MPLEMENTATION AND RESULT

In this section, we will �rst discuss some implemen-
tation details, and then present the experimental results.

A. Implementation Details

Data Organization: It is important to guarantee
that the local incident radiance directions are distributed
evenly on the hemisphere. We use a low distortion
area preserving parameterization [34] for the incident
radiance direction and view direction hemispheres.

e
u

d

Fig. 4. Packing a 6D BTF into a 3D RGBA texture.

As depicted in Fig. 4, we pack BTFs into 3D RGBA
textures, each layer of which corresponds to a sample
view direction. For each layer, the data is organized
with a number of blocks, each of which corresponds

to a sample incident radiance direction. Thus, each of
these blocks is a sample of the patch rendered under a
particular incident directional light and view direction
combination. The interpolation across the block uses
built-in hardware, and the interpolation in the view direc-
tion is performed manually in the pixel shader. Instead
of using simple bilinear interpolation, which leads to
ghosting artifacts, we map the view direction back to the
direction sphere and retrieve the four adjacent samples
for the interpolation. No interpolation is needed for the
incident radiance directions, since we directly transfer
the global incident radiance to the local sample incident
directions.

Precomputation Optimization:Biclustering is the
main bottleneck of precomputation. As a simple opti-
mization for Algorithm 1, we maintain an in�uence value
for each row and each column, de�ned as the in�uence
of the operations on the change of cost in Eq. (9). We
organize all row and column operations into a priority
queue according to the in�uence value. At every step we
select the operation at the front of the operation queue.
And after an operation is conducted, we update the
affected operations in the operation queue, and refresh
the queue accordingly.

This select-conduct-update process is more ef�cient
than the straightforward implementation, since we do not
need to iterate all the operations to select the one that
reduces the cost most. This is achieved at the cost of
updating the queue after each operation. Fortunately, the
updating process is highly local, since each operation
only affects a very small number of operations in the
queue.

The above process is repeated until the operation at the
front of the queue has negative in�uence on� W , when
all operations in the queue cannot reduce the overall cost
anymore. Note that during the whole process the size of
the queue remains asMn + N - the sum of column
number and row number.

For example, for a new columnk0 which is not in the
current submatrixTb[j 1; j 2; : : : ; j r ; k1; k2; : : : ; kl ]. The
constant valuet0 is chosen to be the non-zero value
that most frequently appears in the rowsj 1; j 2; : : : ; j r

of column k0. Then the in�uence of the new column
to � W consists of the cost of the column itself, which
corresponds to ther + 2 l � 1 term in Eq. (9), plus the
sum of the in�uence of each of the elements in the
rows j 1; j 2; : : : ; j r , which correspond to the2nnz(Tb) �
2nnz((Tb)R ) term. For this new column, the cost of
the column is� 2, since it causesl to increase by1.
To compute the in�uence of a particular element, three
different cases need to be considered:

� if the element's value ist0, it causesnnz(Tb) to
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increase by1, and the in�uence is2;
� if the element's value is0, it causesnnz((Tb)R ) to

increase by1, and the in�uence is� 2;
� if the element's value is a non-zero value other

than t0, it causes bothnnz(Tb) andnnz((Tb)R ) to
increase by1, and the in�uence is0.

If the insertion of this new column is conducted,
�rst, the in�uence value of the column itself should
be changed, since the corresponding operation with the
column has changed from insertion to deletion. Second,
in�uence values of all the rows that has a non-zero
element in this column, plus the rows that the residuals
in the column are located should be changed, according
to the above element in�uence evaluation.

For other operations, including the deletion of an
existing column from the current submatrix and the
deletion/insertion of rows, the in�uence value can be
derived similarly.

Rendering Optimization:Biclustering multiplica-
tion is mostly bounded by memory access, since the
computation itself is very simple. To improve the mem-
ory access coherence, we �rst perform all the bicluster
multiplications Bi L . A runtime bicluster bufferPB is
maintained, each slot of which corresponds to a bicluster.
We iterate all the biclusters and calculate a single scalarP l

m=1 tm L km (Eq. (6)) for each of them. At the end of
this iteration we have the result of all required bicluster
multiplications in the buffer.

Then we need to accumulate the products to ap-
propriate local incident radiance directions. For each
direction(row) j , we store the indices of all the related
biclusters in I j , which are then used to access the
bicluster buffer and sum up the products. The pseudo
code is listed in Algorithm 2.

We implement the above computation by CUDA [35],
and pass the result to the �nal BTF shading by CUDA-
OpenGL interoperatability routines.

Another easy optimization is to reuse the local incident
radiance vector if only the view direction is changed. In
the results presented in Section VI, we will list the fps
numbers for lighting and view changes separately.

B. Results and Comparisons

Platform: We implemented our system on a work-
station with a 3.00 GHz Quad Xeon CPU, 4GB RAM,
and a NVidia GTX 280 graphics card. We use CUDA to
compute the incident radiance of all vertices and render
the shading of BTF with OpenGL.

Comparison with Low-frequency Bi-scale Render-
ing: In Fig. 1, we compare our rendering result with
low-frequency bi-scale rendering [3]. In the global scale,

Algorithm 2 Pseudo code for computing
P

i Bi L
Input :

f Bi g, transfer matrix biclustering
L , lighting vector

Output :
L � , local incident radiance vec-

tor
1: for all bicluster indexi do
2: (PB) i  

P l
m=1 tmL km ff tm g; f km g in Bi g

3: end for
4: for j = 1 to Mn do
5: L �

j = 0
6: for k = 1 to K j do
7: f K j : number of biclusters for rowj g
8: i  (I j )k f I j : related bicluster's indicesg
9: L �

j  L �
j + ( PB) i

10: end for
11: end for

(a) SH (b) Biclustering (c) Reference

Fig. 5. Our result better captures the appearance of glossy materials
than its low-frequency counterpart.

we can see a more accurate shadowing effect, especially
for the bunny's ears, while in the local scale, a better
perception of the bumpy bunny surface is achieved by
our result, thanks to the more accurate capturing of the
self-shadowing effects of the surface details.

Fig. 5 shows the advantages of our algorithm over
low-frequency bi-scale rendering in rendering glossy
materials. The material of the chains is modeled by
an anisotropic analytic representation( [36], [37]). The
specularity of the material is better captured in our result,
producing a higher shading contrast. In addition, our al-
gorithm better captures the thickness of the armor, thanks
to the more faithful rendering of the self-shadowing
effects at the meso-scale.

Comparisons with Alternative Methods:One im-
portant advantage of our algorithm is the storage ef-
�ciency. By exploiting coherence in both rows and
columns of the transfer matrix, as well as exploiting the
property that the non-zero matrix entries only evaluate to
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(a) Biclustering (b) Reference

(c) Clustered PCA (d) Haar wavelet

Fig. 6. Comparisons of different compression methods of global
radiance transfer. The original transfer matrix is obtained by pre-
computing for each of the 16K vertices a transfer matrix fromthe
6,144 global incident directions to the 64 BTF incident directions. For
CPCA, the rows of the transfer matrix are divided into 32 clusters, and
8 eigen-vectors are generated for each cluster, yielding 36.2MB �nal
data. For wavelet, each row of the matrix is non-linearly approximated
by area-weighted selecting the �rst 12 wavelet basis lights, yielding
37.1MB �nal data.

a limited number of values, our method provide much
higher quality than alternative methods at comparable
storage cost.

In Fig. 6 we compared the result generated by our
method and CPCA [1] and non-linear wavelet approx-
imation [4], [5]. We choose the parameters of these
alternative methods in a way that their storage costs
are roughly the same as ours(36.4MB). Severe rendering
artifacts can be observed for both of these methods,
as seen in Fig. 6(c)(d), while ours(Fig. 6(c)) is almost
visually indistinguishable from the reference(Fig. 6(d)).

A comparison of the storage costs of these methods at
the same quality would make the comparison more com-
plete. The high cost of CPCA compression(more than
10 hours), however, made such a search of parameters
infeasible.

Parameters and Performance:Environment source
lighting is represented as a cubemap of resolution6 �
32� 32 and the dimension of the light vector is 6,144. For
visibility sampling, 2 � 2 down sampling is performed
to yield 6 � 32� 32 cubemaps.

The resolution of incident directions of BTFs is8� 8,
except for the “Armor” scene, where the resolution of

Fig. 7. A temple scene with a �ve different BTFs. The eaves molding
uses a patch size of64 � 64, while all other parts use patches of
32 � 32.

TABLE I
TEST SCENE STATISTICS

Scene Bunny Armor Chair Temple

Figure Fig. 1 Fig. 5 Fig. 6 Fig. 7

Resolution 640 � 480 480 � 640 640 � 640 640 � 480

#Vertices 3,286 10,652 16,101 32,409

#BTFs 1 1 3 5

BTFs size(MB) 113.2 255.2 169.9 226.5

nnz(T) (M) 10.6 21.9 40.5 62.8

MFLOPs 21.2 43.9 81.0 125.6

Reduced to 5.8 14.9 9.0 7.9

Computation% 27.4 33.9 11.1 6.3

Data size(MB) 1,400 9,500 6,300 12,600

Reduced to(MB) 24.2 59.0 36.4 32.9

Data size% 1.7 0.62 0.58 0.26

Precomp.(min) 12 46 33 59

Avg. FPS 97.0/56.1 42.8/24.9 51.8/33.7 61.1/34.3

* Statistics for the 4 test scenes used in our paper. For rendering
performance, we give the average frame rates for view/lighting
changes, respectively.

12 � 12 is used since the BTF used for that scene has
a larger high frequency component. The resolution of
viewing directions is12 � 12. The patch sizes used for
the BTFs of all our demos are64� 64 or 32� 32. Other
detailed settings of parameters and performance are
included in Table I(Note that two performance numbers
are measured for each scene, the �rst one is for �xed
lighting and dynamic view, from which the cost of global
transfer is excluded, and the second is for dynamic
lighting and view). The scene named “Temple”(Fig. 7)
is constructed to show our algorithm's ability to render
multiple BTFs. Five BTFs are used for different parts
of that scene, while the transfer matrix is de�ned and
compressed for the entire scene.

From the numbers listed in Table I, we can see that the
ef�ciency of biclustering is dependent on the properties
of the scene geometry. For scenes mainly consisting of
“�at” geometries, such as “Temple”, the coherence in
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the transfer matrix is very high, leading to more ef�cient
compression. For curved geometry, as the “Bunny”, the
compression is less effective. The cost of transfer matrix
multiplication and BTF shading are roughly comparable,
and the former is dominated by the gathering phase,
in which the products in the runtime bicluster buffer
are accumulated to the corresponding incident radiance
directions. For BTF shading, the important factors are
the number of pixels to be shaded and the coherence
of the BTF fetch. Denser BTF tiling leads to lower
coherence between adjacent pixels, and in turn lower
shading performance.

The biclustering algorithm scales well with the resolu-
tion of local incident directions, as shown in Fig. 8. The
storage cost of the compressed transfer matrix at the res-
olution of32� 32 is 58.5MB, which is less than 2.5 times
larger than the storage at8 � 8. While this is partially
due to the sparsity increase of the transfer matrix, the
biclustering algorithm did achieve practical storage cost
at higher resolution. As for the rendering performance,
the interpolation and BTF shading cost scales roughly
quadratically with the local incident direction resolution,
and dominates the rendering cost at higher resolution.
This can be seen from the diminishing gap between
the performance of �xed and moving lighting. Note that
from (a) to (b) we observe superquadratic performance
drop, mainly due to the large BTF size which lead to
worse cache hit rate in BTF data fetches.

We have also tested the scalability with regard to
scene complexity by using the same bunny model with
different vertex number, and the result are shown in
Table II. We obtain steady compression ratio for different
vertex numbers. The rendering performance, on the other
hand, scales roughly linearly with the vertex number.

It should be noted that our technique is orthogonal
to BTF compression techniques ( [38]–[40]), since we
focus on the compression of the global transfer matrix.

VII. C ONCLUSION AND FUTURE WORK

In this paper, we address the problem of rendering all-
frequency bi-scale radiance transfer. The main challenge
is the large transfer matrix that needs to be stored and
manipulated. We propose a lossless compression algo-
rithm based on transfer matrix biclustering. We introduce
a novel algorithm for �nding the optimized biclustering
of the transfer matrix and minimizing runtime computa-
tion cost. Our algorithm is able to reduce storage and
computational complexity down to 5%-30%, enabling
real-time rendering.

For the meso-scale representation of the surface de-
tails, though we only focus on BTFs in this paper,

TABLE II
SCALABILITY TEST RESULTS

#Vertices 3,286 12,380 47,960

nnz(T) (M) 10.6 39.2 151.3

MFLOPs 21.2 78.4 302.7

Reduced to 5.8 21.2 80.7

Computation% 27.4 27.0 26.7

Data size(MB) 1,400 4,868 18,859

Reduced to(MB) 24.2 84.1 316.9

Data size% 1.7 1.7 1.7

Precomp.(min) 12 49 279

Avg. FPS 277.9/86.8 115.8/32.3 48.5/11.9

* Bunny models with different numbers of vertices are used to
test our algorithm. Note the consistent compression ratios. The
rendering performance scales linearly with the vertex number.

our algorithm is not limited to BTF rendering. Other
surface detail representations, such as VDM, normal
map, spatially invariant or variant BRDF, can all be
used. For simpler representations such as normal map
or spatially invariant BRDF, our algorithm can handle
dynamic surface details, since they are not involved in
the precomputation. Fully dynamic environment lighting
can also be supported, since we directly use the cubemap
representation for the lighting.

As a limitation, our algorithm only handles distant
lighting. Also, it is dif�cult to incorporate global scale
inter-re�ections, since many possible values will be
introduced into the transfer matrix, breaking the prereq-
uisite of our biclustering algorithm. Another limitation
is that, as other per-vertex PRT algorithms, we require
the models to be reasonably tessellated since the per-
pixel local incident lighting is interpolated linearly from
vertex data. Signi�cant error can also be introduced by
interpolating across vertices that pointing in very differ-
ent directions, which could be alleviated by applying a
proper cease angle as in shading interpolation.

In future work, we are interested in developing mech-
anisms that enable trade-offs between quality and stor-
age/performance. Currently our method is based on a
compression of the radiance transfer matrix, instead of
an approximation. A possible way of approximating
the transfer matrix is to ignore the residual matrices
according to a carefully designed error metric. It is also
interesting to improve the algorithm by making use of
the knowledge of lightings and BTFs.
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