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Abstract—We present a real-time algorithm to render transfer, the method is limited to very blurry shadows and
all-frequency radiance transfer at both macro-scale and matte materials. Sometimes it is not suf cient to reveal
meso-scale. At a meso-scale, the shading is computed on ghe ne details of the object surface and the relationship
per-pixel basis by integrating the product of the local inct  pepween the lighting and different parts of the object, as
dent radiance and a bidirectional texture funcUon. Whllle Fig. 1(a) shows.
at a macro-scale, the precomputed transfer matrix, which PRT has also been extended to all-frequency illumi-

transfers the global incident radiance to the local inciden ) . - .
radiance at each vertex, is losslessly compressed by d'ation, by representing the lighting and transfer with

novel biclustering technique. The biclustering is directy Wavelets [4]-[7], or spherical radial basis functions [8].
applied on the radiance transfer represented in a pixel These techniques, however, compute per-vertex shading
basis, on which the BTF is naturally de ned. It exploits and would be impractically expensive if the ne details
the coherence in the transfer matrix and a property of such as in Fig. 1(c) are to be rendered.

matrix ele_ment values to reduce bo_th storage and runtime  \\je propose a real-time algorithm for all-frequency bi-
qomp;Jtatlon cost, O‘IJ_r new alg_o?thm renhders at real-  goale radiance transfer rendering. The algorithm renders
time frame rates realistic materials and shadows under hard and soft shadows at both macro-scale and meso-

all-frequency direct environment lighting. Comparisons . . .
show that our algorithm is able to generate images that scale(Fig. 1(b)), and supports arbitrary materials.

compare favorably with reference ray tracing results, and 1€ main challenge of all-frequency bi-scale radiance
has obvious advantages over alternative methods in storagetransfer is the precomputation and storage of the macro-
and preprocessing time. scale transfer function, which is de ned in a 6D space
formed by global incident direction, local incident di-
rection, and surface position. To capture all-frequency
occlusion and re ection effects, each dimension has
to be sampled at a reasonable rate. This makes the
transfer function very costly to be precomputed, stored
ynthesizing realistic images requires faithful simuer manipulated at run-time.
lation of the interactions of light and matter at all We represent the light and transfer in a pixel basis,

relevant scales, which is very challenging due to the largad compress the macro-scale transfer matrix by a novel
representation gaps between these scales. Many exisbigustering technique, which reduces both the storage
rendering techniques are limited to effects at a singéd runtime computation cost and enables real-time
scale. rendering of all-frequency bi-scale radiance transfer.

Based ormprecomupted radiance transf§], or PRT, A pixel basis is poor in representing smooth functions,
Sloan et al. propose bi-scale radiance transfer [3] & pointed out by Ng et al. [4]. In our case, however,
model radiance transfer at two scales. The main iddese transfer function is not a smooth one, because
is to decompose the radiance transfer function intotlae re ectance term is decoupled from the macro-scale
global part, which is represented in a macro-scale atrdnsfer function, and the transfer function is determined
coarsely sampled at each vertex, and a local part, whighvisibility, rotation and down-sampling. As a result, the
is represented in a meso-scale, densely sampled at ehehtransfer function is a coarsely discretized spherical
pixel and mapped over the object. The bi-scale transferfisiction that tends to form blocks(Section IV-A). We
then combined at run time to render self-shadowing aesploit this property in biclustering(Section IV-B, IV-C)
interre ection effects at both scales. Due to the low-ordé¢o losslessly compress the transfer function.
spherical harmonics(SH) used to represent lighting andCompared with existing transfer matrix compression

Index Terms—lllumination, Rendering, Shadow Algo-
rithm, Graphics Hardware.

. INTRODUCTION



IEEE TRANSACTIONS ON VISUALIZATION & COMPUTER GRAPHICS 2

(&) SH [1] (b) Biclustering (c) Reference

Fig. 1. A Stanford bunny with a bumpy surface illuminated Imyieonment lighting. Note how our all-frequency algorithmore faithfully
captures the shadowing effects at both global and locaéscak compared with the low-frequency bi-scale algorithm [

techniques such as clustered principal component anaRrdering of lighting effects caused by local radiance
ysis(CPCA) [1], [6], biclustering takes advantage dfansfer.

specic properties of the transfer matrix, and it also wang et al. render shadows at both scales [24] by
better adapts to different levels of available coherenggtroducing a 4D meso-structure distance function(MDF)
As a result, a more ef cient compression is achieved, @spresentation. It is limited to simple lighting sources

will be demonstrated in Section VI. like point lights, since rendering is based on shadow
mapping and accumulation over complex light sources
Il. RELATED WORK is not affordable for interactive applications.

Local Effects: In computer graphics, local lighting Global Eﬁegts:ReaIistic_ rendering qf global effe_cts_
effects had been represented by textures, bidirectional Ygder complex lighting requires integration over the inci-
ectance distribution functions(BRDFs), height elds [g]dent directions, which is expensive if conducted directly.
or bump maps. The bidirectional texture function(BTF¥!0an et al. solve the light integration problem by an of-
[10], which is a 6D function that encapsulates appeal?® 'tabulatlon of an object's response to Iow-frequency
ance that varies spatially and with light and view diredigting [2], represented by SH, and turn the run-time
tion, is introduced to represent more general local effectd€gration into a linear combination of the responses to
Hardware based techniques have been developed( [£ACh SH basis lighting. Exploiting the coherence among
[12]) for full 6D BTFs rendering. Lower dimensionalvertices, compression methods are introduced using PCA
alternatives have also been introduced( [9], [13], [14l7>] or CPCA [1]. We take a different approach for
to reduce the storage and rendering cost. BTF capturi h transfer r_epresen_tatlon and compression and achieve
[10], [15]), synthesis( [12], [16]), and editing tools( [1.7 higher rendering quality at the same storage cost.

[18]) have also been proposed, and a wide variety of Traditional PRT has been extended to ne, repetitive
BTFs are available for representing different kinds d@cal details. By combining the local and global radiance
material appearance. See the survey by Mller et al. fsansfer [3], self-shadowing and interre ection effects
a good overview [19]. at both macro-scale and meso-scale can be rendered
More general representations include the shell texturerealtime, yet only under low-frequency environment
function [20], view-dependent displacement map [21fjghting. Our method extends the low-frequency bi-scale
and generalized displacement maps [22]. These repi@nsfer to all-frequency, and supports both accurate
sentations, though being able to capture more genesfRdows and complex materials.
local effects such as subsurface scattering and ne-PRT has also been extended to handle all-frequency
scale silhouettes, are also more expensive to store andfmidows by using a non-linear wavelet approximation
render, and are not as widely used as BTFs. [4], albeit with either xed lighting or viewpoint. This
Recently, Sloan et al. proposed to t the precomputdiiitation has been overcome by factoring the transfer
transfer function of local features by zonal harmonicfynction into a visibility term and a re ectance term
which can then be rotated efciently at run time forand computing at run time a wavelet triple product of
multiplication with the global incident lighting [23], lighting, visibility and re ectance to yield the outgoing
represented in spherical harmonics. radiance [5]. A similar approach can be dif cult to
These methods focus on re ectance representation aaqply to our transfer matrix, since unlike the re ectance
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function, the rotation from a global coordinate frame to
a local coordinate frame for each vertex is de ned in 6D
space, and is still too expensive to precompute.
Another dimensionality reduction technique is based
on decomposition of the BRDF, which has been used

in many all-frequency PRT algorithms( [6]-[8], [26], <T/é, -

[27]). It is not clear how this technique could be used

in our case, since the re ectance function has already

been decomposed to meso-scale and the rotation term

in the transfer function depends on the surface location,

making the decomposition infeasible. Fig. 2. Transfer the global incident radiariceio the local coordinate
Xu et al. [28] exploit the coherence in directiongame ofp, yielding the local incident radiande, . Per-pixel shading

of both lighting, visibility and BRDF, corresponding's then computed by integrating the product of BTF ang

to the coherence in the rows of our transfer matrix,

and enables object rotation in all frequency renderin

of dynamic scenes and on-the-y BRDF editing Oupgansfer matrix are compressed instead of approximated,

method exploits coherence in both rows and columﬁgd the local response encoded in the 6D BTF is

and can tackle transfer matrix of higher dimensionalitf7,rec'|§,6||y rten(_jer?g._ lustering is a techni hich h
which enables bi-scale radiance transfer. clustering. Biclustering 1S a technique which has

Garg et al. [29] leverage the symmetry and datQ_een extensively used in biological data analysis to nd
sparseness of the transfer matrix and represent it us matrices where the genes exhibit highly correlated

hierarchical tensors. The 4th-order tensor representﬁ\ 'V'tles for e\éer)'/vlcgnqmon,ngrl_ more éj?:eta\l;\.;,, seela
the light transport is recursively divided into 16 chilf SCeNt sUvey by Madeira an |ve|r_a[ J. We apply
idea to transfer matrix compression and develop a

dren until the node can be represented using ranll— | algorithm for biclust ruct q i
approximation. The nodes in that hierarchy are syp2Vve! algorithm for bicluster construction and reai-time

blocks formed by neighboring rows and columns. Thrgnderlng.
characteristic of the transfer matrix in our case is differ-
ent from theirs, which will be shown in Section IV-A,
due to the asymmetry of the input and output of the We use math italics for scalars, 3d points or vec-
transfer. Thus we take a different approach to comprdsss (e.g., X, p), boldface italics for higher dimen-
the transfer matrix. sional vectors (e.g.L), and sans serif for matrices
Recently, an all-frequency shadow algorithm for dyer biclusters(e.g.,T, B). A submatrix is noted as

[1l. OVERVIEW AND TERMINOLOGY

light sources, and extended convolution shadow mapsAs in low-frequency bi-scale rendering [3], we decou-
[31] are used to render the shadows generated by eacplefthe coarse (PRT) and ne (BTF) radiance transfer in
these light sources. No precompuatation is needed for gr@computation and combine the transfer at both scales
visibility and dynamic scene objects can be supporteat. run-time. In a preprocess, we compute and store the
The algorithm, however, focuses on shadow renderimgtrix that transfers the source lighting, represented in
instead of local re ectance. Integration of the BRDHhe global coordinate frame, into the local frame of each
across the light source domain is not suppported, awertex. Both visibility and rotation are incorporated into
the BRDF in the direction of the center of each ardhe transfer matrix, and macro-scale shadowing effects
light is evaluated to weight the contribution. It is no&re captured.
clear if complex materials such as shown in this paperAs depicted in Fig. 2, the global incident radiance
can be supported. functionL is transferred to each vertex by a multiplica-
Integration of meso-scale surface details into the PRON with the transfer matrix:
framework has recently been shown possible [32] by L = T.L 1)
exploiting a clustered piecewise constant representation P P
for the visibility and lighting. Precomputation of thisWe use the vector form(such kg to indicate a spherical
representation for the 4D BRDF, however, is already présnction(such as (! ;)) represented in any basis de ned
hibitively expensive so that it is evaluated dynamically @n the sphere. And ™ is used to emphasize thaf
the cluster centers. In our approach, the global radiarisede ned in the local coordinate frame @f T is the
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transfer matrix sampled @ which will be explained in
more detail below.

It is sometimes more convenient to use the compact
form of Eqg. (1), which simply packs the, vectors for
all vertices in the scene into a single veclor:

L =TL )

The meso-scale transfer is computed per pixel to
capture the ner variations of the meso-structures on _
object's surface, as shown in Fig. 2. More precisely, for (@ Asmall patchand a sample vertex, together with
each pixelx, shading is computed as a particular local incident direction
X
B(x;e)=  bluje;dL (x;d)= b(u;e) L (x) (3)
d

whereB (x; e) is the outgoing radiancé,is the 6D BTF,
u is a 2D texture coordinate aralis the view direction,
d is the direction of the incident radiance. Note tlat
and d are both de ned in the local coordinate frame
of the point corresponding t&. L (x;d) is the local (b) Transfer matrix and the corresponding row
incident radiance at pixed. The last part of Eq. (3)isa , _
reformulation in vector form. The per-pixel local incidenf'd; 3 An example of transfer matrix construction. A smaitqh
. . . . of 76 vertices is used to show the process.

radiance vectot. (x) can be obtained by interpolating
L, de ned at each vertex.

We choose the pixel basis to represent both lighting IV. PRECOMPUTATION
and transfer. In other words, each componentLof

. o . In a preprocess, we construct the transfer mafrix
is simply the sampled incident radiance value of the . .

: : N at each vertex to obtain the overall transfer mafrjxon
corresponding pixel on the direction cubemap.

Note that Eq. (3) requirds (x: d) to be sampled at theWhICh a greedy iterative search is performed to yield a

same set of directions d%u; e; d). Assuming the BTF compact bicluster representation.

is sampled atV incident radiance directiong, (x) is

M -dimensional, and so is,. The light sourcé. (! j), on A. Transfer Matrix Construction

the other hand, is often discretized in a higher resolutionFor a given local incident directiody at vertexp, the

(N sample directionsN > M ). The vertex transfer transfer matrix elementTp)jx represents the contribu-
matrix Tp is aM N transfer matrix, with its elementtion of the global incident directiod,. In other words,

(J;k ) representing the contribution of the global incidenthe element indicates how much of the global incident
radiance at directiok to the local incident radiance atradiance atdy would reach the local incident radiance
directionj . For a scene with vertices, theT isMn  N.  directiond; .

The transfer matrixT is very large, due to the high- The construction of the transfer matrix is depicted in
dimensional nature of the transfer function. For exampleig. 3. We rasterize a high resolution visibility hemi-
for a moderate scene con guration with 15k verticegube at each vertep, and down-sample it to the same
6 32 32 source lighting directions anl 8 BTF resolution as the environment lighting. Each pixel of the
lighting sample directionsl has nearly 6 billion entries. cubemap corresponds to an incident radiance direction.
Though sparse, it is still quite cumbersome to store These directions are iterated to evaluate their contribu-
relight with. tion to each local incident radiance directidn

To compresg and accelerate run-time multiplication, At each incident directionds, we rst check the
we decompose it into a number of submatrices, invasibility, and totally blocked directions are bypassed.
way that minimizes the computation cost of Eq. (2). Thé/e nd the nearest local incident radiance directign
decomposition, which will be described in detail in thand sef(Tp);x to the visibility value atd.
next section, is conducted as a preprocess and is referredote that the local incident radiance directiafsare
to as the biclustering of the transfer matrix. de ned in p's local coordinate frame and to nd the
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nearestd; for global incident radiance directioth, we B. Bicluster

need to rotate all the local incident radiance directions The most straightforward way to exploit the coherence
to the global coordinate frame. in the transfer matrix would be to extract sub-matrices
Fig. 3(a) shows a particular local incident radianggaying constant entries. This simple clustering approach
directiond; at vertexp with the contributing cubemap powever tends to yield a large number of very small
directions shown in red. These contributing directiongysters and we instead seek a more general representa-
correspond to elements in theé' row of the transfer tion for the coherence, and we found the biclustering
matrix. After all vertices are processed, we pack thg@chnique that is extensively used in biological data
transfer matrice3, to obtain the overall transfer matrix-analysis is very suitable for our purpose.
We show the transfer matrix for this example in Fig. 3(b), \we base our algorithm on a very simple observation.
and the corresponding row for the direction in Fig. 3(59uppose we have a submatrix Bfformed by selecting
is highlighted in red. the j1;j2;::::jr rows and theky;ko::::;k columns
Due to the down-sampling, the visibility at each pixekom T, noted asT[j1;j2;::1;jr; K1 ko 00 k(] If each

can have values other thahand 1. Generally, if we column of the submatrix is composed of elements of a
perform2™ 2™ down-sampling, the number of possiblegnstant value:

visibility values is2?™ + 1.

One alternative representation for the radiance transferkn = Tickn = = Tjky » tm;8mM 21125502500
would be to store the down-sampled visibility vectors (4)
and the rotation matrix as reshufing vectors. Thisihen we have
however, swaps the order of down-sampling and rotation, ,'S Ia_rs{
and the low sampling rate of the rotation will mtroduce]-[il; ke skILke s k]=[ a s all:

noticeable rendering artifacts. B )

From the small example in Fig. 3, we see two prope tibi + ol + ik )
erties of the transfer matrix. First, the transfer matrix ifhe submatrix that satis es Eq. (4) can be represented
very sparse. Actually, onl¥):69% of the elements areas a constant column biclusteror simply bicluster.
non-zero. This can be easily understood: for a givéind we call such a submatrix hicluster submatrix
local incident radiance direction, only a small numbeX bicluster is determined by the row indices and the
of directions on the source lighting cubemap may cogelumn indices of the submatrix, plus the values of each

tribute. The sparsity alone, however, still does not makelumnty;ty;:::;t;
the transfer matrix tractable, since there are still tens ofGiven a biclusterB[j1;:::;jr; Kkt t]
millions of entries to be stored and multiplied with thdelongs to aMn N transfer matrix, we can de ne
incident radiance at runtime. its multiplication with aN vectorL
Second, we see regularity in the distribution of the Py . L :
. . o m=1 tmbLk, FJ 2Fj15j20:050r0

non-zero entries - they tends to form blocks. This regu-(BL); = 0 otherwise
larity is due to the structure in visibility and the distri- .

Y y j=1;2::0;Mn; (6)

bution of normal directions of vertices. Note that unlike
in the transfer matrix between symmetric incident anglelding aM  n vector. Note we only neel oating
exitant light eld, where the matrix entries tend to fornpoint multiplications and 1 additions, as well as
continuous sub-blocks that can be well approximatediditions to accumulate the resulting vector of Eq. (6).
using rank-1 factors [29], the "blocks” here might b&Ve de ne thecostof a bicluster as

discontinuous, since the transfer is between the incident )

2D environment lighting and exitant 4D surface light W@ =r+2l L (7)
eld and we do not take inter-re ections into accountre ecting the number of FLOPs involved in the bicluster
This kind of regularity inspires us to use a biclusteringultiplication with B.

technique to exploit the coherence in arbitrary rows andBy decomposing the transfer matrix into bicluster
columns. Unlike CPCA, which exploits the coherencgubmatrices, we can obtain itscluster representatian
between elements of xed size(the rows), we use biclublotice that anl 1 submatrix of T can be represented
ters, whose size can adapt to the available coherenuog.a smallest bicluster described by three scalars. This
This, joined with exploiting the limited number of pos-guarantees the existence of a bicluster representation
sible matrix entries, makes it possible for us to develdpr any givenT. What we need though is an optimal

a technique that provides higher compression rates thHaolustering of the transfer matrix that minimizes the run-
existing techniques such as CPCA and wavelet. time computation cost.
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C. Transfer Matrix Biclustering

Algorithm 1 Pseudo code for transfer matrix biclustering

Given the transfer matriX, the biclustering ofl is a

Input: transfer matrixT

set of bicluster®; that satis es _(I?utput: fBig, a biclustering
X
TL BiL ;8L 8 1T, T.
[ 2: if nnz(T¢) =0 then
e want to nd the biclustering that minimizes 3: terminate
W (B)). 4: end if

It has been shown that such a biclustering of a matri®:
is NP-complete [33]. In this section, we describe af:
greedy iterative algorithm for transfer matrix bicluster-7:
ing. 8:

Randomly choose a non-zero elemé€nit);x

Tp  Tclj; k] finitialed as anl 1 matrixg
We W(Tb)

for all possible operatiofi do

Qualitatively, when possible, we want to look for ©: if  W(f(Tp) > W then
larger biclusters, which provide higher reduction in comtO: We W (f (Tp))
putation and storage. However, looking for submatriceld- fe f
that strictly satisfy Eq. (4) tends to yield very smalft2: end if
biclusters, weakening the effectiveness of biclustering3: end for
An important observation is that we can decomposk: if W= W(Ty) then
any submatrix into a bicluster submatrix and a residua$: OutputTyp's corresponding bicluster
submatrix. Below is an example. 16: Tc Tc Tp

"1§§1# i a# "o o 17: goto 2
P s _ i;l+ol00 18: else

1130 t:i1 0 000 1 - To To(To)
2 4 2 4 20: goto7

This allows us to nd a larger bicluster submatrix,21: end if
paying the price that the additional non-zero elements
in the residual submatrix should be handled in later
iterations. But that is a reasonable trade-off as long amatrix-vector multiplication. The operations involved in
we can keep the number of non-zero elements in ttiee corresponding bicluster multiplication W (B) =
residual submatrix small. r+21 1 If a residual submatrix exists, then every

We start from a randomly chosen element, which i®n-zero element in the residual submatvlx requires
al 1 bicluster submatrix itself, then iteratively tryanother addition and multiplication. Thus, the change in
to insert(delete) rows or columns into(from) the curremomputation cost can be evaluated as
bicluster submatr.ix. Every inserj[ or delete operation W(M)=2nnz(M) (r+21 1) 2nnz(Mg) (9)
produces a new bicluster submatrix that changes the total
computation required by the matrix-vector multiplica- W (M) is a measurement of the change of the required
tion(Eq. (8)). We evaluate the changes and select theOPs due to representation transfer. It can be either
operation that reduces the computation most. negative or positive.

Operations are performed iteratively to improve the We list the pseudo code for transfer matrix biclustering
current bicluster submatrix until no more computatioift Algorithm 1. Note that for “possible operation” in
reduction is possible. As a bicluster is produced, th@e 8, we refer to the insertion of a new row/column
corresponding submatrix is subtracted from the transf@ the current bicluster matrix or the deletion of an
matrix. The algorithm terminates when all the remainingxisting row/column from it. For deletions, the corre-
elements in the transfer matrix become zeroes. sponding non-zero elements in the residual submatrix

The most important issue is how to evaluate th&'e€ absorbed. Note thdt, is usually smaller thai .
computational change that is related with a particulahd the matrix subtraction in line 16 means subtracting
submatrix and its bicluster representation. For a givéfe elements ofl, from the corresponding elements of
r | submatrixM and its bicluster representatid, Tec.
the oating point operations related to the submatrix
is 2nnz(M), where thennz(M) is the number of non- V. RENDERING
zero elements oM. This accounts for a per-element Rendering is divided into per vertex computation and
multiplication and addition that are involved in theer pixel computation, corresponding to macro-scale
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transfer and meso-scale transfer, respectively. to a sample incident radiance direction. Thus, each of
We take the cubemap representation of the enviraiftese blocks is a sample of the patch rendered under a
ment lighting as the input light vectdr, perform the particular incident directional light and view direction
bicluster@ultiplications and accumulate the results tmmbination. The interpolation across the block uses
calculate ; BjL. Each multiplication is computed viabuilt-in hardware, and the interpolation in the view direc-
Eq. (6). The resulting incident radiance vectbr,, is tion is performed manually in the pixel shader. Instead
packed into the vertex buffer. of using simple bilinear interpolation, which leads to
Per pixel computation is conducted on the GPghosting artifacts, we map the view direction back to the
according to Eq. (3). In a pixel shader, we take thdirection sphere and retrieve the four adjacent samples
interpolated vertex data as the per-pixel incident racéanior the interpolation. No interpolation is needed for the
vectorL ;. We also obtain the view direction and texturéncident radiance directions, since we directly transfer
coordinate, which are then used to lookup the BTtRe global incident radiance to the local sample incident
vector b(u;e). Then a simple dot produdi(u;e) L,; directions.
is performed to yield the shading at the corresponding Precomputation OptimizationBiclustering is the
pixel. main bottleneck of precomputation. As a simple opti-
Current graphics hardware has a limitation on thaization for Algorithm 1, we maintain an in uence value
number of available pixel input registers, and we cannfar each row and each column, de ned as the in uence
process all the vertex data in a single pass. Multi-pagkthe operations on the change of cost in Eq. (9). We
rendering has to be conducted and alpha-blending is usgdanize all row and column operations into a priority

to add up the results of each pass. gueue according to the in uence value. At every step we
select the operation at the front of the operation queue.
VI. IMPLEMENTATION AND RESULT And after an operation is conducted, we update the

In this section, we will rst discuss some impIemen-aﬁeCted operations in the operation queue, and refresh

tation details, and then present the experimental resu}&e queue accordingly. _ .
This select-conduct-update process is more ef cient

than the straightforward implementation, since we do not
need to iterate all the operations to select the one that
Data Organization: It is important to guaranteereduces the cost most. This is achieved at the cost of

that the local incident radiance directions are distriduteipdating the queue after each operation. Fortunately, the
evenly on the hemisphere. We use a low distortianpdating process is highly local, since each operation
area preserving parameterization [34] for the incideohly affects a very small number of operations in the
radiance direction and view direction hemispheres. queue.

The above process is repeated until the operation at the
front of the queue has negative in uence oW, when
all operations in the queue cannot reduce the overall cost
anymore. Note that during the whole process the size of
the queue remains dgn + N - the sum of column
number and row number.

For example, for a new columky which is not in the

A. Implementation Details

constant valuetg is chosen to be the non-zero value
that most frequently appears in the rowsjo;:::;jr
of column kg. Then the inuence of the new column
to W consists of the cost of the column itself, which
corresponds to the+21 1 term in EqQ. (9), plus the
sum of the inuence of each of the elements in the
Fig. 4. Packing a 6D BTF into a 3D RGBA texture. rowsji;jz;:::;jr, which correspond to thennz(Ty)
2nnz((Tp)r) term. For this new column, the cost of
As depicted in Fig. 4, we pack BTFs into 3D RGBAhe column is 2, since it cause$ to increase byl.
textures, each layer of which corresponds to a samgle compute the in uence of a particular element, three
view direction. For each layer, the data is organizetifferent cases need to be considered:
with a number of blocks, each of which corresponds if the element's value idg, it causesnnz(Ty) to
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(9]
increase byl, and the in uence i<; Algorithm 2 Pseudo code for computing ; BjL
if the element's value i®, it causesinz((Tp)r) to  Input:
increase byl, and the in uence is 2; f Big, transfer matrix biclustering

if the element's value is a non-zero value other L, lighting vector
thantp, it causes botmnz(T,) andnnz((Tp)r) to  Output:
increase byl, and the in uence 0. L , local incident radiance vec-
If the insertion of this new column is conductedtOr
rst, the inuence value of the column itself should 1: for all biclyster index do
be changed, since the corresponding operation with the  (Pg)i 'm:1 tmLk, ff tmgfkmgin Big
column has changed from insertion to deletion. Second: end for
in uence values of all the rows that has a non-zero4: for j =1 to Mn do
element in this column, plus the rows that the residuals: L; =0
in the column are located should be changed, accordingg for k =1 to K; do

to the above element in uence evaluation. 7. fKj: number of biclusters for royg
For other operations, including the deletion of ans: i (Ij)k fl;: related bicluster's indicep
existing column from the current submatrix and the9: L; L; +(Ps)i
deletion/insertion of rows, the in uence value can béo: end for
derived similarly. 11: end for

Rendering Optimization:Biclustering multiplica-
tion is mostly bounded by memory access, since the
computation itself is very simple. To improve the mem-
ory access coherence, we rst perform all the bicluster
multiplications BiL . A runtime bicluster bufferPg is
maintained, each slot of which corresponds to a bicluster.
We iterate all the biclusters and calculate a single scalar
| _1 tmLk, (EQ. (6)) for each of them. At the end of
this iteration we have the result of all required bicluster
multiplications in the buffer.

Then we need to accumulate the products to ap-
propriate local incident radiance directions. For eadly. 5. Our result better captures the appearance of glossgrials
direction(row)j, we store the indices of all the relatedhan its low-frequency counterpart.
biclusters inlj, which are then used to access the
bicluster buffer and sum up the products. The pseudo ) )
code is listed in Algorithm 2. we can see a more accurate shadowing effect, especially

We implement the above computation by CUDA [35]for the bunny's ears, while in the local scale, a better
and pass the result to the nal BTF shading by cupaRerception of the bumpy bunny surface is achieved by
OpenGL interoperatability routines. our result, thanks to the more accurate capturing of the

Another easy optimization is to reuse the local incideS€!-Shadowing effects of the surface details.
radiance vector if only the view direction is changed. In F19- 5 shows the advantages of our algorithm over
the results presented in Section VI, we will list the prow-frequency bi-scale rendering in rendering glossy

numbers for lighting and view changes separately. materi_als. The mater_ial of the chgins is modeled by
an anisotropic analytic representation( [36], [37]). The

_ specularity of the material is better captured in our result
B. Results and Comparisons producing a higher shading contrast. In addition, our al-
Platform: We implemented our system on a workgorithm better captures the thickness of the armor, thanks
station with a 3.00 GHz Quad Xeon CPU, 4GB RAMto the more faithful rendering of the self-shadowing
and a NVidia GTX 280 graphics card. We use CUDA teffects at the meso-scale.
compute the incident radiance of all vertices and render Comparisons with Alternative Method€ne im-
the shading of BTF with OpenGL. portant advantage of our algorithm is the storage ef-
Comparison with Low-frequency Bi-scale Rendereiency. By exploiting coherence in both rows and
ing: In Fig. 1, we compare our rendering result witltolumns of the transfer matrix, as well as exploiting the
low-frequency bi-scale rendering [3]. In the global scal@roperty that the non-zero matrix entries only evaluate to

(a) SH (b) Biclustering (c) Reference
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Fig. 7. Atemple scene with a ve different BTFs. The eavesaitg
uses a patch size @ 64, while all other parts use patches of

(a) Biclustering (b) Reference 32 32
TABLE |
TEST SCENE STATISTICS
Scene Bunny Armor Chair Temple
Figure Fig. 1 Fig. 5 Fig. 6 Fig. 7
Resolution 640 480 | 480 640 | 640 640 | 640 480
#\Vertices 3,286 10,652 16,101 32,409
#BTFs 1 1 3 5
BTFs size(MB) 113.2 255.2 169.9 226.5
(c) Clustered PCA (d) Haar wavelet

nnz(T) (M) 10.6 21.9 40.5 62.8

Fig. 6. Comparisons of different compression methods obalo \ELOPs 21.2 43.9 81.0 125.6

radiance transfer. The original transfer matrix is obtdirgy pre-
computing for each of the 16K vertices a transfer matrix frira Reduced to o8 14.9 9.0 79
6,144 global incident directions to the 64 BTF incident direns. For ~ Computation% 27.4 33.9 11.1 6.3
CP_CA, the rows of the transfer matrix are divided |_nto _32 s and Data size(MB) 1,400 9.500 6.300 12,600
8 eigen-vectors are generated for each cluster, yielding\88 nal

data. For wavelet, each row of the matrix is non-linearlyragimated ~_ Reduced to(MB) | 24.2 59.0 36.4 32.9
by area-weighted selecting the rst 12 wavelet basis lightsiding Data size% 1.7 0.62 0.58 0.26
37.1MB nal data. -

Precomp.(min) 12 46 33 59

Avg. FPS 97.0/56.1| 42.8/24.9| 51.8/33.7| 61.1/34.3

a limited number of values, our method provide much _,_,. . . .

. . . Statistics for the 4 test scenes used in our paper. For riegder
higher quality than alternative methods at Comparablﬁerformance, we give the average frame rates for viewitight
storage cost. changes, respectively.

In Fig. 6 we compared the result generated by our
method and CPCA [1] and non-linear wavelet approx-
imation [4], [5]. We choose the parameters of thesE? 12 is used since the BTF used for that scene has
alternative methods in a way that their storage costslarger high frequency component. The resolution of
are roughly the same as ours(36.4MB). Severe renderirigwing directions isl2 12 The patch sizes used for
artifacts can be observed for both of these methodse BTFs of all our demos a4 64 or 32 32 Other
as seen in Fig. 6(c)(d), while ours(Fig. 6(c)) is almostetailed settings of parameters and performance are
visually indistinguishable from the reference(Fig. 6(d))ncluded in Table I(Note that two performance numbers
A comparison of the storage costs of these methodsaa¢ measured for each scene, the rst one is for xed
the same quality would make the comparison more cofighting and dynamic view, from which the cost of global
plete. The high cost of CPCA compression(more thdransfer is excluded, and the second is for dynamic
10 hours), however, made such a search of parametlebting and view). The scene named “Temple”(Fig. 7)
infeasible. is constructed to show our algorithm's ability to render
Parameters and Performancé&nvironment source multiple BTFs. Five BTFs are used for different parts
lighting is represented as a cubemap of resoluon of that scene, while the transfer matrix is de ned and
32 32and the dimension of the light vector is 6,144. Farompressed for the entire scene.
visibility sampling,2 2 down sampling is performed From the numbers listed in Table |, we can see that the
toyield6 32 32cubemaps. ef ciency of biclustering is dependent on the properties
The resolution of incident directions of BTFs8s 8, of the scene geometry. For scenes mainly consisting of
except for the “Armor” scene, where the resolution dfat” geometries, such as “Temple”, the coherence in
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the transfer matrix is very high, leading to more ef cient SCALABIL-II—TAYBI:FI;:ES”T RESULTS
compression. For curved geometry, as the “Bunny”, the _

o . . #Vertices | 3,286 12,380 47,960
compression is less effective. The cost of transfer matrix
multiplication and BTF shading are roughly comparable, _"z(T) (M) 10.6 39.2 151.3
and the former is dominated by the gathering phase, MFLOPs 21.2 8.4 302.7
in which the products in the runtime bicluster buffer _Reduced to 5.8 21.2 80.7
are accumulated to the corresponding incident radiance Computation% | 27.4 27.0 26.7
directions. For BTF shading, the important factors are Data size(MB) | 1,400 4,868 18,859
the number of pixels to be shaded and the coherence Reduced to(MB) | 24.2 84.1 316.9
of the BTF fetch. Denser BTF tiling leads to lower pata size% 17 17 1.7
cohe_rence between adjacent pixels, and in turn lower Precomp.(min) | 12 29 279
shading performance. Avg. FPS 277.9/86.8| 115.8/32.3| 48.5/11.9

The biclustering algorithm scales well with the resolu-
tion of local incident directions, as shown in Fig. 8. The” Bunny models with different numbers of vertices are used to
storage cost of the compressed transfer matrix at the retgst our algorithm. Note the consistent compression rafioe
olution of 32 32is 58.5MB, which is less than 2.5 times rendering performance scales linearly with the vertex renmb
larger than the storage 8t 8. While this is partially
due to the sparsity increase of the transfer matrix, the
biclustering algorithm did achieve practical storage cosur algorithm is not limited to BTF rendering. Other
at higher resolution. As for the rendering performanceyrface detail representations, such as VDM, normal
the interpolation and BTF shading cost scales roughiyap, spatially invariant or variant BRDF, can all be
quadratically with the local incident direction resolutjo used. For simpler representations such as normal map
and dominates the rendering cost at higher resolutiar. spatially invariant BRDF, our algorithm can handle
This can be seen from the diminishing gap betweelynamic surface details, since they are not involved in
the performance of xed and moving lighting. Note thathe precomputation. Fully dynamic environment lighting
from (a) to (b) we observe superquadratic performancan also be supported, since we directly use the cubemap
drop, mainly due to the large BTF size which lead ttepresentation for the lighting.
worse cache hit rate in BTF data fetches. As a limitation, our algorithm only handles distant

We have also tested the scalability with regard tighting. Also, it is dif cult to incorporate global scale
scene complexity by using the same bunny model withter-re ections, since many possible values will be
different vertex number, and the result are shown introduced into the transfer matrix, breaking the prereg-
Table II. We obtain steady compression ratio for differemtisite of our biclustering algorithm. Another limitation
vertex numbers. The rendering performance, on the otierthat, as other per-vertex PRT algorithms, we require
hand, scales roughly linearly with the vertex number. the models to be reasonably tessellated since the per-

pixel local incident lighting is interpolated linearly imo

It should be noted that our technique is orthogonskrtex data. Signi cant error can also be introduced by
to BTF compression techniques ( [38]-[40]), since wiaterpolating across vertices that pointing in very difer
focus on the compression of the global transfer matrixent directions, which could be alleviated by applying a

proper cease angle as in shading interpolation.
VII. CONCLUSION AND FUTURE WORK In future work, we are interested in developing mech-

In this paper, we address the problem of rendering a#inisms that enable trade-offs between quality and stor-
frequency bi-scale radiance transfer. The main challengge/performance. Currently our method is based on a
is the large transfer matrix that needs to be stored ag@mpression of the radiance transfer matrix, instead of
manipulated. We propose a lossless compression algo- approximation. A possible way of approximating
rithm based on transfer matrix biclustering. We introdudbe transfer matrix is to ignore the residual matrices
a novel algorithm for nding the optimized biclusteringaccording to a carefully designed error metric. It is also
of the transfer matrix and minimizing runtime computanteresting to improve the algorithm by making use of
tion cost. Our algorithm is able to reduce storage aitile knowledge of lightings and BTFs.
computational complexity down to 5%-30%, enabling
real-time rendering. REFERENCES
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