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Abstract —In this paper, we present a novel method to extract motion of a dynamic object from a video that is captured by a
handheld camera, and apply the motion to a 3D character. Unlike the motion capture techniques, neither special sensors/trackers
nor a controllable environment is required. Our system signi�cantly automates motion imitation which is traditionally conducted by
professional animators via manual key-framing. Given the input video sequence, we track the dynamic reference object to obtain
trajectories of both 2D and 3D tracking points. With them as constraints, we then transfer the motion to the target 3D character by
solving an optimization problem to maintain the motion gradients. We also provide a user-friendly editing environment for user to
�ne-tune the motion details. As casual videos can be used for imitation, our system therefore greatly increases the supply source of
motion data. Examples of imitating various types of animal motions (that are hard to motion-capture) are shown to demonstrate the
effectiveness of our system.

Index Terms —Motion imitation, motion gradient, mesh deformation, depth recovery, motion tracking.
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1 INTRODUCTION

B ESIDES the appearance, the motion of synthetic 3D
characters is an important visual cue to increase the

rendering realism. Imitating motion of real humans and an-
imals is common in �lm and game productions. Such realistic
motion is traditionally achieved by either motion capture
(with specialized equipments) or keyframe-based pose editing
(requiring highly skillful animators).

The motion capture technique records the movements of
an actor using trackers together with the acquisition device.
It tracks the marked points (normally at the joints of an
articulated object) over time, usually in a carefully controlled
environment. Although methods, such as the one of Vlasic
et al. [1], were proposed to alleviate the high con�guration
requirement, motion capture is still dif�cult, if not impossible,
for wild (e.g. a running lion) and small animals (e.g. a tiny
salamander). Animators solve this problem by keyframing the
motion by hand. However, if the character undergoes complex
motion with many subtle details, manual keyframing could be
very time-consuming and labor intensive.

In this paper, we present a novel system to signi�cantly
automate this manual editing process by �rst acquiring the
reference motion information of an animal (or a human) from
a video sequence, and then applying the acquired motion to
a 3D character. The input video can be simply taken by a
handheld camera. Neither special hardware nor a controlled
environment is required. The top row of Fig. 1 shows a set of
example video frames.

The main dif�culty of recovering high-quality 3D motion
from an ordinary video is the lack of dense depth information
to constrain the estimated character pose. This paper presents
a novel method to make use of both the limited depth in-
formation computed with multi-view geometry and sparse 2D
motion tracks estimated from a monocular video to represent

character motion. These two groups of data together help
de�ne motion gradients, which capture the essence of object
movements among frames. In the motion transfer step, motion
gradient can even compensate moderately divergent shapes of
the source and target characters.

Another contribution of our method is to accomplish 3D
animation by solving a non-rigid deformation problem with the
space-time constraints from the extracted 2D and 3D tracks.It
is notable that many motion retargeting techniques [2], [3]are
skeleton-based. They only transfer articulated motion, but not
the surface deformation as in our case. Such complex non-rigid
deformation is vital for high-quality motion imitation, which
is however dif�cult to model via articulated motion transfer.

Our system also provides powerful motion editing ability
for user to �ne tune the motion-retargeted result. The user
can add, remove, and modify control points in both the video
motion estimation and the 3D character animation phases.
These modi�cations are combined with automatically re�ned
constraints to produce the desired deformation. As a result,
our motion imitation system no longer requires highly skilled
animators, or high acquisition cost as in conventional motion
capture. Besides, the supply source of motion information is
signi�cantly expanded with the wide availability of low-cost
digital video cameras and videos. In contrast to inter-frame
interpolation typically adopted in the keyframing approaches,
our method generates motion in between user-edited frames by
solving an optimization problem with regard to the extracted
2D and 3D tracks. Hence the resultant character animation in
general is more natural, without the need of de�ning dense
keyframes.

2 RELATED WORK

As our method involves procedures of motion acquisition from
video and motion retargeting to 3D objects, we brie�y review
the related work in these areas.
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Fig. 1. Snapshots of the input video frames (top) and the animated characters (bottom) from our system.
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Fig. 2. System overview.

2.1 3D Reconstruction from Images/Videos

Extraction of 3D information from an image sequence of
a static scene has been extensively studied in [4], [5], [6].
Traditional multi-view stereo methods [6] aim to automatically
recover the dense 3D models from multiple images. In [7], [8],
interactive image-based modeling methods were proposed and
tailored for the recovery of speci�c types of static objects, such
as trees, vehicles, or urban buildings. All these methods are
limited to static scene as dynamic objects do not satisfy the
multi-view geometry. By making use of multiple synchronized
cameras, methods of [9], [10], [11] can be applied to dynamic
3D models recovery or 3D motion capture.

Non-rigid structure-from-motion (NRSFM) methods [12],
[13] can be used to reconstruct non-rigid scenes from a monoc-
ular video. They generally assume that the 3D deforming
object can be modeled as a linear combination of a series
of basis shapes, which is insuf�cient for constructing high-
quality models for complex motion with signi�cant (non-
linear) occlusions (see the lion example in this paper). In
contrast, our method can handle such occlusion and eliminate
visual artifacts by solving a non-rigid deformation problem
with the space-time constraints generated from the extracted
2D and 3D motion tracks. It can even moderately tolerate the
discrepancy between the reference and target shapes, whichis
intractable for existing NRSFM methods.

2.2 Vision-based Motion Capture

Typical motion capture consists of hardware sensors/trackers
and a camera to collect the motion data. It has been widely
adopted in �lm industry for capturing realistic human motion.
However, the specialized hardware is usually expensive. To
reduce the hardware requirement, video-based motion capture
solutions [14], [15], [16] were proposed, based on computer
vision techniques, to create motion data using the limited
information provided by a video. However, these techniques
are typically limited to tracking simple human motion (e.g.
walking), where the acquired motion information is rough.
As studied by Gleicher and Ferrier [14], even using many
strong priors (e.g., using learned motion models to restrict
or predict likely poses), the results from the state-of-the-art
vision methods cannot overtake the ones obtained from optical
tracking systems, and are dif�cult to meet the production
quality. Existing methods mainly focus on tracking the motion
of articulated skeletons.

Sand et al. [17] proposed a full-body motion capture system,
which can acquire the deformable human geometry from the
silhouettes captured by one or more cameras. The motion of
the skeleton is required to be determined �rst. In comparison,
we propose tracking feature points in a monocular video to
constrain the surface deformation, without skeleton. So our
method can be easily applied to a wide range of characters,
including human and animals.
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2.3 Mesh Deformation for Retargeting

In 3D deformation, the representative work includes skele-
ton subspace deformation (SSD) [18], free form deformation
(FFD) [19], multi-resolution technique [20], [21], and gradient
domain methods [22], [23], [24], [25], [26], [27], [28]. For
animation retargeting, Sumner and Popovi [29] transferredthe
deformation of a source triangular mesh onto a target. Zhou et
al. [24] demonstrated the application of retargeting the cartoon
animation to 3D models by applying the graph Laplacian
mesh deformation technique. They used 3D curve constraints,
where the in�uence weight of the control curves should be
carefully tuned by the user and the depth information should
be manually assigned (or set almost constant). Therefore, it
is dif�cult to retarget complex 3D motions, such as the ones
shown in this paper. In addition, they did not address the prob-
lem caused by the shape difference between the video objects
and the target 3D models. With the skeleton and key poses
of a model as input, Bregler et al. [30] proposed applying the
af�ne deformation from 2D cartoon animations to 2D drawings
and 3D shapes. Favreau et al. [31] proposed animating 3D
animal models from existing live video sequences. However,
this method also requires the skeleton and key poses of the
model as input, and assumes the animation has a cyclic motion.
In summary, most of the above methods ignore the potentially
useful depth information available in the video, probably due
to the dif�culty of accurate depth recovery.

3 MOTION IMITATION

The system overview is shown in Fig. 2. The key idea is to
infer the trajectories of both 2D and 3D feature points from
the input video and apply them to comprehensive motion im-
itation. The 2D motion track refers to planar pixel shift in the
video frames, and hence is projective. The 3D motion track,
with depth information, is obtained using multi-view geometry
and structure-from-motion (SFM) over multiple frames. With
the extracted motion data, we transfer them to a 3D character
by maintaining themotion gradientwith a set of 2D and 3D
constraints.

Our system consists of three main phases. Given an input
video, if the camera moves, the depths of the static scene
are recovered by multi-view geometry. This step is mostly
automatic where a small amount of user intervention is on
roughly masking out the foreground object in a sparse set of
keyframes. Then a complete 3D background scene is produced
by pixel reprojection. If no depth information can be recovered
from the video, our system still works, but with the trade-off of
making some depth assumption or increasing user interaction
for model pose adjustment. In the second phase, user selects
2D and 3D key points. The corresponding motion tracks
are then extracted from the input video. Finally, in the last
phase, based on these 2D and 3D motion tracks, the motion
is transferred to the target 3D character with progressive
re�nement.

3.1 Camera Pose and Background Depth Estimation

Given an input video sequence containingn frames, we
estimate camera poseC t and recover the corresponding

Fig. 3. The soles of the feet (green points) touches the
stair from time to time.

depth map for framet. In our system, the SFM method
of Zhang et al. [32] is used to recover the parameter set
C = f K t ; R t ; T t g, whereK t is the intrinsic matrix,R t is
the rotation matrix, andT t is the translation vector. With
these estimated parameters, we then roughly mask out the
foreground dynamic object (the reference object) using the
lasso tool. The multi-view stereo method of Zhang et al. [33]
is used to recover the view-dependent, dense depth maps of
the static background.

Missing pixels, after removal of foreground object, are
inferred from the temporally neighboring frames by color and
depth projection based on the estimated camera poses. For
acceleration, we estimate depth maps only for a sparse set of
frames. They are completed and triangulated to construct a 3D
background model. The depth information is used in following
steps to help generate 3D motion constraints.

3.2 Extraction of 2D and 3D Motion Tracks

We extract sparse feature tracks from the dynamic video
object, and use them to animate a 3D character. The user �rst
selects key points in the �rst frame on the character e.g. theleg
and head points shown in Fig. 13. Then an interactive point
tracking method described in the Appendix is employed to
track the movements of these points in the successive frames
and formmotion tracks. Each of them includes a set of points
X i

t wheret and i index the images and tracks respectively.
However, the obtained 2D motion tracks are not adequate

to constrain the 3D motion imitation, due to the lack of neces-
sary depth information. To address this problem, we propose
tracking and determining the 3D coordinates of a special type
of surface points, calledmotion anchors. A motion anchor
refers to a surface point that touches the static background
from time to time. A typical example is the sole of the foot,
as illustrated in Fig. 3. When a motion anchor contacts the
ground, it should have the same depth with the ground point
and its 3D coordinate at this moment can be determined. With
this observation, we allow user to freely de�ne a frame set

and manually label anchor points in
 . Then the same tracking
procedure described above is employed to track the anchors
in all frames.

We denote the 3D coordinate of a touch point on ground as
~X k wherek indexes frames andk 2 
 , as shown in Fig. 4.

Our objective is to solve for the complete 3D trajectoryM t ,
wheret = 0 ; :::; n � 1, to capture the motion details of the key
points. Given the camera parameters estimated in the �rst step
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Fig. 4. A 3D trajectory fM 0; M 1; :::; M n � 1g is obtained
for points possibly touching the static background. M
projects to u in the video frames. The blue point denotes
the anchor ~X t in frame t.

(Section 3.1), each 3D point inM t projects tou t in the image
plane, as shown in Fig. 4. The depth ofM t , denoted aszM t , is
frame-dependent with respect to the camera parameters. Thus,
estimating the 3D positionM t is equivalent to computing the
depthzM t . Given the camera parameters, projection position
u t and depth valuezM t , the 3D positionM t can be expressed
as

M t = R >
t (zM t K � 1

t u t ) � R >
t T t : (1)

We de�ne a few constraints as follows to estimatezM in
all frames using an optimization method. First, we require
M k = ~X k for all k 2 
 . It is equivalent to minimizing

E1 =
X

t 2 


jj zM t � z ~X t
jj2: (2)

In addition, we use the following temporal smoothness terms
to regularize the solution:

E2 =
n � 2X

t =0

jj zM t � zM t +1 jj2 +

n � 3X

t =0

jj2zM t +1 � zM t � zM t +2 jj2: (3)

E2 minimizes the integration of the �rst and second derivatives
to obtain C0- and C1-continuity.E2 can also be de�ned as
other energy functions that encourage piecewise smoothness
or occasional discontinuities. We use Eq. (3) because we found
that the depth of a moving body point in general does not
change abruptly in consecutive frames even for the challenging
examples shown in this paper. With these two constraints, we
solve forM by minimizing the energy

ED (zM ) = E1 + �E 2; (4)

where� is the smoothness weight, and is set to 0.0001 in our
experiments.ED is a quadric energy function and has a closed
form solution.

Selecting motion anchors can be done quickly in our
system. User performs simple mouse click to indicate the
contact points in sparse frames. Then the 3D positions are
automatically computed by optimizing depths. This process

A

B
B' B'

A'

(a) (b)

P P'

B'

A'

(c)

P''

Fig. 5. Motion track transfer. A source point P moves from
position A to B in a motion track, shown in (a). To retarget
this motion to between endpoints A0 and B 0, we preserve
the motion gradient and take A0 and B 0 (A0; B 0 2 	 ) as
new boundary conditions to solve a linear system. The
transferred motion track is show in (b). The source motion
style is naturally preserved in the target. However, using a
na�̈ve motion interpolation as shown in (c) fails to capture
important details in the curved motion.

only takes1 � 2 seconds for each frame in our experiments.
As it is possible to �nd multiple motion anchors, we usej to
index the trajectories and denote thej -th trajectory asM j .

3.3 Motion Track Transfer

The above method estimates a set of 2D and 3D motion
tracks. Their absolute positions cannot be directly used to
animate a 3D character because the reference and target shapes
may not be exactly the same. Fig. 7 shows one example
of transferring the motion of a man to an armadillo model.
Note that their relative lengths of legs and body are quite
different. To compensate this discrepancy, we optimize a group
of position and projection constraints withmotion gradient.
The notion ofmotion gradientwas originally used in the area
of optical �ow estimation and contour tracking [34]. In this
paper, it is de�ned as the 2D/3D position displacement in
consecutive frames.

We �rst adjust the scale and orientation of the target
model and make it approximately aligned with the input video
object in the �rst frame. This process is demonstrated in our
supplementary video. We transfer the motion information from
tracksX and M to the target model aŝX and M̂ using the
motion gradient. It constrains that the motion displacements
between sourceX i (or M j respectively) and target̂X i (or
M̂ j ) are similar, and is de�ned as

X̂ i
t +1 � X̂ i

t = X i
t +1 � X i

t ; (5)

M̂ j
t +1 � M̂ j

t = M j
t +1 � M j

t :

To obtain a unique solution for (5), we de�ne the Dirichlet
boundary condition on a few user manipulated frames (the set
is denoted as	 ). These frames are not continuous. For each
frame tk 2 	 , X̂ i is set corresponding to an adjusted 2D
positionp t k in frametk . We express this condition as

X̂ i
t k

= p t k : (6)

Combining (5) and (6), we solve a linear system and obtain
new tracksX̂ , which have similar motion asX . The 3D
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tracksM̂ can be constructed in a similar way. Fig. 5 shows
one example. Compared to the na�̈ve motion interpolation, the
above system optimizes motion tracks between the reference
and target models with sparse point constraints, and hence
provides moderate tolerance of shape difference.

3.4 Target Mesh Animation

With the estimatedX̂ and M̂ , we deform the target model
by minimizing a detail-preserving energy similar to the onein
[26]. Suppose the deformed model in framet contains vertices
V i

t and Sj
t that correspond toX̂ i

t and M̂ j
t respectively. We

construct the following two groups of constraints.
In any framet, due to the enforced correspondences be-

tween the result vertexSj
t and the 3D pointM̂ j

t , we express
this condition as

Sj
t = M̂ j

t (7)

for all j and t. Each mesh vertexSj
t in the target 3D model

is anchored with a 3D position̂M j
t .

For the 2D motion tracks, with the similar correspondences,
it is required that the coordinate(ui

t ; vi
t ) of X̂ i

t maps to the
camera projection of the result vertexV i

t in 2D, that is

(ui
t ; vi

t ; 1)> � K t (R t V i
t + T t )

using the estimated camera parametersK t , R t , and T t in
each frame. DenotingFt = K t R t , H t = K t T t , the above
equations can be rewritten as

(ui
t Ft [3] � Ft [1])V i

t = H t [1] � ui
t H t [3];

(vi
t Ft [3] � Ft [2])V i

t = H t [2] � vi
t H t [3];

(8)

for all i andt, whereFt [s] denotes thes-th row of the matrix
Ft , andH t [s] denotes thes-th element of the vectorH t .

Combining (7) and (8), we construct a linear system

CU = p; (9)

such thatU is an unknown vector containing allS and V .
C and p are a matrix and a vector, respectively, constructed
from (7) and (8). Finally, with a conventional detail preserving
function G(U), we minimize the following energy for mesh
deformation:

E(U) = G(U) + � jjCU � pjj2; (10)

where� is a weight andG(U) is a non-linear surface detail
preserving energy. It is de�ned asG(U) = kLU � �̂ (U)k2,
where L is a Laplace matrix and̂� (U) is the differential
coordinate. Their de�nitions are the same as the one proposed
in [26]. Energy G(U) measures the change of the mean
curvature normal under a local frame, which re�ects the local
distortion of the model. OptimizingE(U) helps distribute
the distortion over the deformed mesh smoothly. The �nal
objective function is solved using an inexact Gauss-Newton
method. In each iteration, the following linear system is solved
as a least square problem:

AU k+1 = b(Uk ); (11)

whereA = L > L + �C > C, andb(Uk ) = L > �̂ (Uk ) + �C > p.
Uk denotes the value ofU in iterationk.

(a) (b)

(c) (d)

Fig. 6. Depth ambiguity of the 2D constraints. (a-b) One
pose of the tiger model from two different views. (c-d)
Another pose from the two views. Their frontal views (a)
and (c) look identical. But the poses differ in (b) and (d),
from a side view.

Note that the deformation produced from this step is by
optimizing E(U) for each frame independently. It has a
chance to be temporally discontinuous. So we describe in the
following section a depth smoothing step to solve this problem.

3.5 Depth Smoothing

One cause of the aforementioned problem is that the 2D
motion tracks in image plane have ambiguity in �nding corre-
sponding depths. One example is shown in Fig. 6 where two
poses look identical from one view ((a) & (c)). But they are
dissimilar from another ((b) & (d)) because of different depth
assignments for the key points. We thus propose regularizing
the deformation by smoothing depths in multiple frames.

The deformation process described in Section 3.4 outputs a
depth ~zi

t for each key pointX̂ i
t . In this step, we re�ne them

by solving the function

min
X

t;i

jj zi
t � ~zi

t jj
2 + �

X

t;i

jj zi
t � zi

t +1 jj2 + (12)

�
X

t;i

jj2zi
t � zi

t � 1 � zi
t +1 jj2;

where� is the smoothness weight. The data termjjzt � ~zt jj2

requires that the depth estimatezt is similar to ~zi
t , and the

terms jjzi
t � zi

t +1 jj2 and jj2zt � zt � 1 � zt +1 jj2 are the �rst-
order and second-order smoothness constraints, respectively.
It forms a least square problem and thus can be easily solved.
After re�ning z, with the depth information, all 2D motion
tracks are upgraded to 3D. They are taken back into (10)
to solve for a re�ned deformation using the same method
described in Section 3.4. The original 2D motion tracks are not
used here, as the upgraded 3D motion tracks already contain
the corresponding constraints.

3.6 User Control with Two-Pass Propagation

Our system also provides user with tools for conveniently
modifying the model. User can iteratively �ne tune the defor-
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(a) (b) (c) (d) (e)

Fig. 7. “Go Upstairs” example. (a) The starting frame of the input video with the tracked points (the red crosses). The
3D trajectories of the two points on the heel are estimated by solving (4). (b) The armadillo model. The red dots are the
key points that correspond to the ones in (a), labeled by the user. (c) The starting frame in the computed animation.
An extra control point, shown in blue, is added by the user for pose adjustment. (d) The side-view of the character in
(c). The pose in frame 80 is shown in (e).

(a) (b) (c)

Fig. 8. Local pose tuning with extra control vertices. (a)
shows the initial character pose in one frame. The feet
penetrates the stairs. We select a control vertex (i.e., the
green point) on the tiptoe for local adjustment. (b) and (c)
show the illustration without/with stairs.

mation result until satis�ed, by manipulating control vertices.
The control vertices can be corresponding to the tracked
features in the video, or not. Whenever user adds, deletes, or
moves the control vertices in the selected frames, our system
automatically propagates the modi�cation to other frames.To-
gether with the estimated trajectory and track informationfrom
the video, the deformation of the target model is re�ned. This
strategy always outperforms interpolation-based keyframing in
terms of the interaction pro�ciency and result quality. Here we
demonstrate how the system re�nes the deformation when the
user moves a vertexv on the mesh in framet. Other operations
such as insertion and deletion of a control vertex work in the
similar way.

After changing the position ofv in frame t (as shown in
Fig. 9(c)), we immediately re-deform the mesh in framet with
this newly added 3D position constraint. Vertexv and framet
are also added to the key point set and the user-editing frame
set 	 (de�ned in Section 3.3) respectively.

If vertex v is not mapped to a motion track, we need
to estimate its motion gradient �rst. We propose atwo-pass
propagationmethod to accomplish this task. In the �rst pass,
the positions of the old key points (without includingv) in
	 are taken as boundary conditions. The motion transfer
algorithm described in Sections 3.3 and 3.4 is performed to
adjust the character poses in the neighboring frames. Afterthe

frame 0

frame 11

frame 25

(a) (d) (g)

(b) (e) (h)

(c) (f) (i)

first-pass deformation second-pass deformationinitial deformation

Fig. 9. Two-pass deformation re�nement. (a-c) Initial
deformation in three frames. Key points are shown in red.
User selects one more point (the green one in frame 25)
on the model, and moves it to a desired position (shown in
blue) for pose adjustment. (d-f) The �rst-pass deformation
result. Although the green point still deviates from the
user assigned position in frame 25, its motion gradient
is estimated. With the control points as the boundary
condition in the edited frames, natural deformation in all
frames is yielded by the second-pass deformation as
shown in (g-i).

�rst-pass deformation, the motion track of vertexv is obtained
to compute the motion gradients ofv in neighborhood frames.
Then, in the second pass, we include the 3D constraint ofv,
and re-deform the mesh sequence. The two-pass deformation
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naturally propagates the user modi�cation in framet to the
neighboring ones. Note if the motion gradient ofv is known
beforehand, the deformation propagation can be done in a
single pass. But in this case the inference will be signi�cantly
dependent of the input where any visual artifacts could leadto
unnatural results. In contrast, our multi-pass strategy mitigates
this type of in�uence and thus is more robust.

Fig. 9 demonstrates the effect of this two-pass propagation.
The complete sequence is included in the supplementary
video1 (between204200 and 300300). Figs. 9(d)-(f) show the
deformation generated in the �rst pass for frames 0, 11, and
25. Vertexv (Fig. 9(f)) still deviates from the user-assigned
position because it is not used as a motion track constraint
in this step. Nevertheless, from the deformed mesh sequence,
we can estimate a 3D trajectory forv in all frames. So in the
second pass, we takev as a track point for �nal optimization,
faithful to the user modi�cation. We denote the trajectory of
v as M̂ K . It is combined with all other tracks to control the
deformation using the algorithm described in Sections 3.3 and
3.4. The �nal deformation result is shown in Figs. 9(g)-(i).It
not only contains a new control vertex in framet, but also has
a natural transition among frames.

3.7 System Summary

Fig. 7 shows a working example demonstrating the procedure
of our motion transfer. Three feature points are initially tracked
on the man in the video – two on the feet and one on the back.
Since the two points on the heel touch the stairs in several
frames, we recover their 3D coordinates and form trajectories
by solving (4) as described in Section 3.2. These points
are used to construct motion gradients, which compensate
the possible shape deviations between the source and target
objects, and facilitate the motion transfer (Section 3.3).Then
we label the corresponding key vertices on the target armadillo
surface, and adjust its pose in the starting frame. The poses
in the following frames can be automatically computed as
described in Sections 3.4 and 3.5. Finally, noticing that the
feet in some frames penetrate the stairs, we select one more
control vertex on the tiptoe and adjust its position in a few
frames, as shown in Fig. 8. This modi�cation is automatically
propagated to other frames to create natural animation. The
pose of frame80 is shown in Fig. 7(e). Readers are referred
to our supplementary video for the illustration.

It should be noted that our progressive pose editing is quite
different from traditional keyframing approaches. The latter
models poses for a set of frames independently, which requires
talent and experience of an artist to envision the naturalness of
the character motion in multiple frames. In comparison, our
method compensates the character shape discrepancy using
motion tracks and gradients. It appropriately adapts the motion
of a source video character to the target.

Moreover, keyframing typically requires manipulation on a
large number of keyframes for precisely describing motion
details, while our method only requires to edit a signi�cantly
smaller portion of frames, thank to the desired constraints

1. The supplementary video can be found from the following site:
http://www.cad.zju.edu.cn/home/gfzhang/projects/imitation/

Fig. 10. The collected 3D models to animate, including
armadillo, tiger, rabbit, salamander, and crocodile.

Fig. 11. Lion example. Top row shows two selected
frames from the input video. Bottom row shows the cor-
responding “motion imitation” result on a tiger character.

and optimization. The two-pass propagation strategy always
outperforms pose interpolation with the same amount of
user input and keyframes. Fig. 12 shows a comparison. The
complete sequence is included in our supplementary video
(between300400and302200).

4 EXPERIMENTAL RESULTS

We have tested the proposed method with several challenging
examples where the input videos are taken by a handheld
camera. The captured animals include lion, cheetah, rabbit,
and salamander. The targeted 3D characters are armadillo,
tiger, rabbit, crocodile and salamander (Fig. 10). The results
are computed on a desktop computer with a 4-core Xeon
2.0GHz CPU. Table 1 lists the statistics for different examples
present in this paper. Complete results are demonstrated inour
supplementary video.

Our system can be divided into a few unsupervised op-
erations that include SFM and multi-view stereo (MVS), and
phases requiring simple user interactions for interactivefeature
tracking (IFT) and pose editing. Table 1 lists the running time
in different stages. The implementation details on interactive
feature tracking are described in Appendix. To process the “Go
Upstairs” sequence with 81 frames, our SFM only takes about
3 minutes. The interactive feature tracking takes 5 minutesto
track points to obtain a set of 2D motion tracks. For correcting
the drifted features, the user only needs to manipulate two
frames, then the in-between feature positions can be automat-
ically re-estimated. After obtaining the 2D motion tracks,we
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(a) The first key pose

(b) The second key pose

(c) Interpolation result

(d) The result by our two-pass propagation

Fig. 12. Comparison of our method and the interpolation-based keyframing. (a) and (b) show two key poses, in
between which we infer the others automatically. (c) The interpolated poses by a mesh morphing technique based on
differential coordinates [35]. (d) The poses obtained using our two-pass propagation. The comparison shows that our
method can naturally preserve subtle motion details.

Fig. 13. 16 tracked points in the video (left image) and
their corresponding 3D vertices on the tiger model (right
image).

TABLE 1
The statistics of examples present in the supplementary

video and this paper.

Sequences Go Upstairs Lion Cheetah SalamanderRabbit
frames 81 240 150 100 50

3D model armadillo tiger tiger crocodile/ rabbit
salamander

# mesh vertices 6002 2507 2507 5002/10002 5002
# tracked 3 16 13 10 9

feature points
# Pose-edited 7 18 20 11/21 3

frames
# SFM (min) 3 8 6 – 3
# MVS (min) 40 90 60 – –
# IFT (min) 5 90 60 90 20

# Pose Editing 10 180 210 90/210 5
(min)

select special points that contact with the ground as motion
anchors. This operation is only performed on the visible points
in a few frames. Selected contact points do not need much
accuracy because motion tracks after all are optimized by

(a)

(b)

(c)

Fig. 14. Deformation with/without 2D motion tracks.
(a) Two frames extracted from the reference video. (b)
Deformation result only using 3D motion anchors. (c)
Deformation result using both 3D and 2D motion tracks.
2D tracks on the legs and body help faithfully transfer the
non-rigid deformation details from the reference character
to the target.
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preserving motion gradient with boundary conditions. Our
progressive pose adjustment is also very ef�cient. It is about
10 minutes for “Go Upstairs” example. It should be noted
that pose editing refers to the total computation needed for
generating the mesh animation, which not only counts user
interaction, but also contains re-computation of the character
poses in multiple frames (as described in Sections 3.4-3.6).
Note that the latter takes the majority of the time. The manual
intervention involves inserting and moving control vertices in
sparse keyframes for pose adjustment by simple mouse click
and dragging (Please refer to our supplementary video for
more details). Each time after user manipulates a few points
in one frame, s/he can choose to propagate the edit to other
frames, by re-executing the automatic animation steps, to see
how the resulted sequence looks like. The propagation process
includes re-optimizing 2D/3D motion constraints (preserving
motion gradients) and re-deforming the mesh subsequence.

In the lion example shown in Fig. 11, the input sequence
contains 240 frames. The lion motion involves rock climbing
and jumping onto the wooden platform. They are very complex
for motion transfer. The muscle on the leg has large non-rigid
deformation. We select 16 points on the lion for tracking, as
shown in Fig. 13 – four points on the claws, and the other12
points are on the body and legs. Since the points on the claws
touch the background scene in several frames, we recover their
3D positions by solving Eq. (4). With the tracked key points,
we transfer the motion of a lion to a tiger model with 2,507
mesh vertices. Only using the 3D motion anchors on the claws
cannot naturally transfer the non-rigid deformation on thelegs
and body, as shown in Fig. 14(b). In comparison, by utilizing
the 2D tracks on the legs and body, we faithfully preserve
deformation details, as shown in Fig. 14(c). Note that this type
of detail preservation would be very dif�cult for the skeleton-
based methods since body deformation is highly non-rigid in
general. We include the complete sequence comparison in the
supplementary video (between302300and304000).

We edited 18 frames in total for progressive pose adjustment
for the lion sequence. Compared to traditional keyframing,our
local editing is much more straightforward because user does
not need to be concerned about the motion continuity and sub-
tle detail preservation in multiple frames. All modi�cations are
automatically propagated to other frames to avoid the jittering
artifacts. The deformation time is approximately linear tothe
number of the mesh vertices. For a mesh with2507vertices,
the function construction time with matrix factorization for
Eq. (10) is 0.2 second in a single thread; solving Eq. (11) in
each iteration takes about0:02second. For deformation in each
frame,5 � 10 iterations are suf�cient in our experiments. Note
that matrixA does not need to be reconstructed if the manual
control vertices are not added or deleted during the course of
interactive pose adjustment. So the system feedback to user
interaction is almost in real-time. The manual pose re�nement
for each user-modi�ed frame typically requires a few minutes,
depending on the motion complexity and the desired animation
quality. For most pose adjustment, it requires only a few clicks
and drags. After deformation, we insert the animated tiger into
the background scene, and render it as shown in Fig. 11.

Figs. 16 and 17 show other animation results. For the

Fig. 15. 10 tracked points and their corresponding 3D
vertices are shown in the extracted frame and the sala-
mander model respectively. We estimate the 3D trajectory
of the point at the back, and then use it as a 3D position
constraint. Other 9 points are used for 2D projection
constraints.

Fig. 16. Salamander example. Two frames selected from
the input video show how the animation is retargeted to
the 3D model.

salamander example shown in Fig. 16, the camera does not
move. So the 3D information cannot be recovered from the
video. We track10 points on the salamander, on the head,
back, legs and tail respectively, as shown in Fig. 15. By
assuming the point at the back has constant depth, we recover
the 3D trajectory of this point in the sequence, and then use
it as a 3D position constraint. Other9 points are used for 2D
projection constraints. For the rabbit example (Fig. 17), since
the desk is planar, we select the recovered 3D points on the
desk to �t the desk plane. In addition, the right hand side of
the rabbit cannot be observed. We resolve this ambiguity by
assuming the right legs undergo the same motion as the left
ones.

In discussion, the amount of user interaction and the number
of pose-edited frames mainly depend on the complexity of ap-
pearance and motion, and even the mesh quality. As shown in
Table 1, in processing the “Go Upstairs” and rabbit examples,
our interactive pose editing is rather ef�cient, only requiring
10and5 minutes, respectively. For the cheetah and salamander
examples, since the motion is much more complex, more user
interactions are required and denser frames are need to be
edited. The interactive pose-editing time for the rabbit example
is only 0.1 minute/frame. It increases to 1.4 minutes/frame
for the cheetah example. Our interactive feature tracking is
also directly related to the complexity of appearance and
motion. For the salamander sequence, the selected key points
are textureless and there are serious re�ections, translucency,
and fast motion, which make the feature tracking extremely
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Fig. 17. Rabbit example. Top row shows the original
frames from the input video. Bottom row shows the motion
retargeted result on a rabbit model.

challenging. Compared to the “Go Upstairs” sequence, the
average tracking time increases from 1.2 seconds/frame to 5.4
seconds/frame for each point.

The amount of user interaction also depends on the required
mesh quality. For the salamander example, we transfer the
3D motion to the crocodile and salamander models. Between
them, the salamander model contains more mesh vertices
and many slim triangles around the tiny legs, which makes
mesh deformation more challenging. Therefore, more user
interactions are required for locally adjusting the leg poses.

5 CONCLUSIONS AND DISCUSSION

We have presented a comprehensive system capable of prop-
erly “extracting” motion from a dynamic object in a monocular
video and retargeting it to a 3D character. The motion data are
described as a few sparse key points tracked in this sequence.
To obtain necessary 3D motion constraints, our method �rst
recovers the camera parameters and the static background.
Then we look for contact points between the dynamic object
and static background so as to infer the corresponding 3D
trajectories in the whole sequence. Our system signi�cantly
expands the number and variety of the sources of motion data,
and can be appropriately used to estimate the motion of the
small-scale and wild animals that are dif�cult to wear trackers
for a motion capture system. Our method also saves animators
from tedious and time-consuming manual keyframing.

Our method can preserve certain �ne details of motion. The
results included in the paper and in the supplementary video
have demonstrated the effectiveness of our method. Taking
the lion model as an example, subtle non-rigid deformation of
the leg muscle is faithfully transferred to the target character.
The ability comes from the detail-preserving energy function.
The extracted 2D tracks are also quite useful to describe
motion details. Increasing the number of feature tracks can
help preserve even more of them.

If the motion details cannot be observed from the video due
to frequent or consistent occlusion, there is basically no way to
obtain suf�cient visual information and accordingly the motion
data. Currently, we use the temporal smoothing and symmetry
constraints to alleviate this problem. We believe with multiple
videos captured from different views, this problem could be
better addressed.

In addition, it is possible that the input video contains
dynamic background. In this extreme case, we may still be
able to obtain partial motion estimate by either increasing
user intervention to adjust the character poses or making
depth assumptions. If the body shapes of the reference and
target characters differ too much, it requires more effort to
manipulate the motion data, as our system requires control
points. We believe this problem can possibly be solved by
�rst transferring our tracked motion data from the video object
to an appearance-similar 3D character, and then applying the
mesh deformation transfer technique [29] to animate the target
3D character.

APPENDIX: INTERACTIVE POINT TRACKING ON

VIDEO

Automatically extracting long and accurate feature tracksfrom
a video is very challenging due to possible occlusions and
viewpoint/appearance changes, as described in Section 3. We
propose a simple and yet very effective interactive approach
to solve this problem. It can yield instant feedback and has no
speci�c preprocessing requirement. High accuracy can alsobe
ensured.

For a trackfX i
t g wherei and t index the track and frame

respectively, we allow the user to manually correct the drifted
features. This process only needs to be done in the user
selected frames. Then our system automatically solves for
the remaining feature positions. SupposeL and R are two
such frames that user operates. Features in framet, where
L < t < R , are estimated by solving a function involving three
terms. They respectively represent the matching coherence,
appearance smoothness, and motion smoothness.

The matching terme(X i
t ) encodes the local appearance sim-

ilarity between the corresponding points in multiple frames. It
is measured in local windowsW centered at these points, as
shown in Fig. 18. We denote the window forfX i

t g as W i
t

and copy the colors of all pixels inW i
t to vectorp(X i

t ) in a
scanline order.e(X i

t ) is de�ned as

e(X i
t ) = w(t)

jjp(X i
t ) � p(X i

L )jj2

jW j
+

(1 � w(t))
jjp(X i

t ) � p(X i
R )jj2

jW j
; (13)

where w(t) = ( R � t)=(R � L ) is a weight function to
balance the appearance similarities with regard toX i

L andX i
R

respectively based on a distance metric.jW j is the size of the
window.

The appearance smoothness term is de�ned as the ap-
pearance distance between temporally adjacentp(X i

t ) and
p(X i

t +1 ); and the motion smoothness term measures the
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Fig. 18. Interactive tracking with DP optimization. (a) The
track points in multiple frames form a single chain. The
blue rectangles denote frames L and R that user oper-
ates. X i

t , for all L < t < R , is the position to be estimated
in the intermediate frames. The local window centered at
X i

t describes the point appearance. (b) Candidate pruning
for local windows centered at X i (0)

t for different i . x0,
x1 and x2 are the selected candidates, among which
minimum distance d is enforced.

Algorithm 1 Candidate Pruning

1) Sort all pixels in a local window, centered atX i (0)
t ,

with respect to the coste(X i
t ). The re-ordered pixels

are denoted asf x k gk=1 ;:::;N .
2) De�ne f V (x k )gk=1 ;:::;N as boolean variables, which are

initialized to zeros. The set of position candidates is
denoted asC(x). It is initially empty.

3) For i = 1 ; ::::; N ,
if V (x k ) = 0 & jC(x)j < 20, addx k to C(x)

for each pixely satisfyingjjx k � y jj < d ,
V (y ) = 1.

position similarity between adjacentX i
t and X i

t +1 . The �nal
objective function combines all these terms:

E(X L ! R ) =
RX

t = L

e(X i
t ) + � 1

R � 1X

t = L

jjp(X i
t ) � p(X i

t +1 )jj2

jW j

+ � 2

R � 1X

t = L

jjX i
t � X i

t +1 jj2; (14)

where� 1 and� 2 are two cost weights, and are set to1:0 and
0:1 respectively.

Optimization We now describe the method to minimize
energy E(X L ! R ). As illustrated in Fig. 18(a), since the
points in a track form a single chain, we can use dynamic
programming (DP) for optimization. Givenm nodes andN
candidates for each node, the complexity of DP isO(mN 2).
If N is large, the optimization will be slowed down. In our
system, we compute the initial estimate ofX i , denoted as
X i (0) , by linearly interpolatingX i

L and X i
R . Based on the

observation that the true position ofXt is generally in the
neighborhood of these estimates, we introduce an effective
pruning algorithm (Algorithm 1) to dramatically accelerate DP.

We �rst select a reasonable number (20 in our experiments)
of candidates within the circular local window centered at each
X i (0)

t . These candidates produce small costs ine(X i
t ) and are

not close to each other because our algorithm enforces the
minimal distance criteria, as illustrated in Fig. 18(b). With the
small number of candidates for each feature, DP is performed
to ef�ciently �nd the global optimum. For further acceleration,
we employ a coarse-to-�ne optimization scheme [36] with a
Gaussian pyramid. The initial local search radiusr is set to
10, and the initial distanced, de�ned in Algorithm 1, is set
to 3. Both r and d are gradually reduced in iterations. Four
passes are suf�cient to �nd accurate match positions. In our
experiments, tracking a point in 50 frames only takes around
4 seconds, or equivalently12fps in speed, suf�cient for the
interactive operations. Compared to the optimization method
of Buchanan and Fitzgibbon [37], our method does not need
to perform feature search in the whole image and has no
preprocessing. It hence yields very high ef�ciency.
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