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Abstract—We present FaceWarehouse, a database of 3D facialof 3D face meshes, which contains two separate face
expressions for visual computing applications. We use Kir#t, models: a bilinear model containing 15 subjects with the
an off-the-shelf RGBD camera, to capture 150 individuals o536 ten facial expressions: a trilinear one containing 16
aged 7-80 from various ethnic backgrounds. For each person, . e - L . .

we captured the RGBD data of her different expressions, subjt_a_cts with five visemes in five (_jlfferent expressions. _The
including the neutral expression and 19 other expressions Multilinear face model can be linked to a face-tracking

such as mouth-opening, smile, kiss, etc. For every RGBD algorithm to extract pose, expression and viseme parameter
raw data record, a set of facial feature points on the color from monocular video or film footage, and drive a detailed

image such as eye comers, mouth contour and the nose tip 3n textyred face mesh for a different target identity. Yin

are automatically localized, and manually adjusted if beter . . .
accuracy is required. We then deform a template facial mesh et al. [6] developed a 3D facial expression database, which

to fit the depth data as closely as possible while matching includes both prototypical 3D facial expression shapes and
the feature points on the color image to their corresponding 2D facial textures of 100 subjects with seven universal
points on the mesh. Starting from these fitted face meshes, weexpressions (i.e., neutral, happiness, surprise, fedness,

construct a set of individual-specifi_c expres_sion blendshees disgust and anger). The expression database can be used
for each person. These meshes with consistent topology are.

assembled as a rank-three tensor to build a bilinear face M facial expression recognition and analysis. All of the
model with two attributeS, |dent|ty and expression. Compaed abOVe face databases Contain faces W|th diﬁerent IdEﬂtItI

with previous 3D facial databases, for every person in our and expressions, but their expression spaces are notealivers
database, there is a much richer matching collection of enough for many applications in visual computing, such

expressions, enabling depiction of most human facial actis. 45 the real-time performance-based facial image animation
We demonstrate the potential of FaceWarehouse for visual . .
shown in this paper.

computing with four applications: facial image manipulation,
face component transfer, real-time performance-based faal ) _
image animation, and facial animation retargeting from video We introduce FaceWarehouse, a database of 3D facial

to image. expression models for visual computing. With an off-the-
shelf RGBD depth camera, raw datasets from 150 indi-
Index Terms—face modeling, facial animation, face database, yiduals aged 7-80 from several ethnicities were captured.
mesh deformation, RGBD camera For each person, we captured her neutral expression and
19 other expressions, such as mouth-open, smile, angry,
: kiss, and eye-shut. For each RGBD raw data record, a set
| Introduction of facial feature points on the color image such as eye

Face models are of great interest to many researchER§Ners, mouth boundary and nose tip are automatically

in computer vision and computer graphics. Different fac!gc_:alized, and manually adjusted if the automatic detectio
models are widely used in many applications, includin inaccurate. We then deform a template facial mesh to the

face replacement, face component transfer, image _pth data as closel_y as possible_ while matching the fe_ature
nipulation, face recognition, facial expression recdgnit PCINts on the color image to their corresponding locations

and expression analysis. In recent years, 3D face mod@fsthe mesh. Starting from the 20 fitted meshes (one neutral
became popular in increasingly complex visual computirfgPression and 19 different expressions) of each person,
applications due to the 3D nature of human faces, cruclif individual-specific expression blendshapes of theopers

in solutions to problems caused by ambiguities and occl@€ constructed. This blendshape model contains 46 action
sions. For instance, the latest approaches to face comporiHts as described by Ekman’s Facial Action Coding System

transfer [1], video face replacement [2], single-view haFACS) [7], which mimics the combined activation effects

modeling [3] are all based on 3D face models. of facial muscle groups. It provides a good compromise
between realism and control, and adequately describes most

There exist numerous excellent 3D face databases for vaxpressions of the human face. Owing to the consistent
ious purposes. Blanz and Vetter's 3D morphable model [#jpology of the meshes in the data, we can subsequently
built on an example set of 200 3D face models describirggganize all the blendshapes of different persons as a rank-
shapes and textures. They then derived a morphable félsee tensor, and construct a bilinear face model with two
model, applicable in 3D face reconstruction from a singlattributes, identity and expression, through a tensorimers
image. Vlasic et al. [5] presented a multilinear modedf singular value decomposition (SVD).



FaceWarehouse can be used in a wide range of applicatifense database for specific applications. Some of these face
in visual computing. In particular, the constructed biline databases are composed only of 2D face images, while
face model is used to estimate the identity and expressiotihers contain 3D shape information. Some of them contain
parameters for faces in images and videos, based on whiotly one static expression (the neutral face), which is
four applications were developed in this paper. The first aprostly used in applications involving only static faces.e.
plication, facial image manipulation, allows users to an face recognition; while others also contain other expogssi
geometric facial attributes, such as the size of mouth, which can be used in face motion-based applications,
the length of face and ethnicity in a single face image.g., face expression recognition and tracking, and face
The second application is face component transfer. Giveganimation in still images and video sequences. In the
two images of the same person with different expressioris|lowing, we only review several representative existing
we can transfer local components such as the mouthworks, and refer readers to the comprehensive surveys by
eyes from one image to the other, keeping the transferr&doss [8] and Ying et al. [6].

components compatible with the overall face shape aﬂg computer vision, 2D face databases have been widely
other components to give the synthetic image a natural '

used as training and/or validation data in face detectiah an

look. The third is real-time performance-based facial 'maq?cognition and facial expression analyses. Yin et al.. [6]

animation, allowing a user to animate a face image 0 )
9 9¢ Mentioned that although some systems have been suc-

a different person by performing in front of an RGBD ) : .

. 4 ; o ._cessful, performance degradation remains when handling
camera, all in real time. The final application is facia . : : .
expressions with large head pose rotation, occlusion and

an|mat|on_ retargetmg from video FO image. Given .Vldeﬁ hting variations. To address the issue, they created a 3D
footage with a continuously changing face and a still facfeg

. . . facial expression database. They used a 3D face imaging
image as input, we transfer the head motion and facia .

o ) . . . sSystem to acquire the 3D face surface geometry and surface
expression in the video to the still face in the image.

texture of each subject with seven emotion-related urders

The main contribution of this paper is an extensive facXpressions. Such a database with few expressions for each
expression database, which contains 150 persons with REFson works fine for their face expression recognition and
different facial expressions for each person. To the best &talysis, but may fall short of the diversity required in gom
our knowledge, FaceWarehouse is the most comprehengilications of visual computing, such as those shown in
3D facial expression database for visual computing to dat8is paper.

providing data sorely needed in a multitude of applicationgian; and vetter [4] model variations in facial attributes
in both computer graphics and computer vision. We Willging dense surface geometry and color data. They built
make it publicly available upon the publication of thi§he morphable face modeio describe the procedure of
paper. In addition, we describe how to use the constructeghgirycting a surface that represents the 3D face from a
bilinear face model for face identity and expression es@ingle image. Furthermore, they supplied a set of controls

mation in facial images and videos. The estimations afg jn«itive manipulation of appearance attributes (tfzin
accurate enough to support a wide range of app"cat'ofb?ninine/masculine).

including animating still face images using real-time RGBD 3 _ _
data as well as video footage. We can generate visuajasic et al.. [5] proposed multilinear models in facial

plausible facial animations for any portraitimage, inéhgd €xpression tracking and transferring. They estimate a mode
those shown in previous work. from a data set of three-dimensional face scans that vary

in expression, viseme, and identity. This multilinear mode
In the rest of the paper, we first review some related Wodecouples the variation into several modes (e.g., identity
in the areas of face model database acquisition and fasgression, viseme) and encodes them consistently. They
manipulation applications in Section II. In Section I, weestimate the model from two geometric datasets: one with
elaborate on the pipeline for the construction of FaceWares dentities each performing the same 10 expressions,
house. Section IV presents several applications showgasihd the other with 16 identities, each with 5 visemes in

the potential of FaceWarehouse. 5 expressions (16 5x 5). To construct their multilinear
models from datasets with missing data, they propose to
[l. Related Work fill the missing combination (e.g., of identity, viseme and

expression) by an expectation-maximization approach.
In this section, we first discuss related work on 2D and 3D

face model databases. Some of them focused on neutral 2t Of these databases contain face data with different
pression models, while others contain multiple expressioffentities, and some even with different expressions. How-
for dynamical applications. We then discuss applicatio¥er: they may still be inadequate for facial expression
involving face and head modeling, including face transfép@rameterization aig. Due to their excellent performance,

reanimation, performance tracking in images and video.facial rigs based on blendshape models are particularly
popular in expressing facial behaviors. Ekman’s Facial

Face model databasesAs face databases are of greafiction Coding System [7] helps decompose facial behavior
value in face-related research areas in both modeling antb 46 basic action units. Li et al. [9] developed a method
validation of methods, many researchers built their owior generating facial blendshape rigs from a set of example
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RGBD Input Depth Map Models Blendshapes

Fig. 1: The generation process of the individual-specific expossblendshapes for one person.

poses. Our database contains the full set of 46 expressexpression to generate a smooth, low-noise depth map.
blendshapes which comprise the linear blendshape modek depth maps, together with the RGB images, are used
for each person to guide the deformation of a template mesh to generate
the expression meshes. Once we obtain all the expression
Face manipulation applications.Face manipulation is a meshes of a single subject, we generate her individual-
convenient tool for artists and animators to create nevafacispeciﬁc expression blendshapes. Fig. 1 shows the entire
images or animqtions frqm existing mate_rials_, and henceﬁ&e"ne of processing one subject. Finally, the expressio
great research interest in computer animation. In the 3fpangshapes from all subjects constitute our face database
domain, Leyvand et al. [10] enhance thtiractivenesf A we have all the face models in a consistent topology, we

human faces in frontal photographs. Given a face image @, puild a bilinear face model with two attributes, identit
the target, Bitouk et al. [11] find a most similar face in nq expression.

large 2D face database and use it to replace the face in the
target image to conceal the identity of the face. Joshi A&t Data capture

al. [12] improve the quality of personal photos by using a ] ] )
person’s favorite photographs as examples. A Kinect system is used as our only capturing device,
capable of producing 640480 2D images and depth maps

Recently, 3D face models have become increasingly pomt- 30 frames per second. With the low-cost small-size
lar in complex face manipulation. Blanz et al. [13] reaniacquisition device, we can capture a person’s face in a non-
mate the face in a still image or video by transferring mouihtrusive way, as the person being captured is not required
movements and expression based on their 3D morphatdewear any physical markers or be staged in a controlled
model [4] and a common expression representation. Thegvironment.

also exchange the face between images across large dif{:er— h N 20 diff i ions: th
ences in viewpoint and illumination [14]. Given a photo o or each person, we capture merent expressions. the

person A, Shlizerman et al. [2] seek a photo of person rgautral expression and 19 other specific exp_ressions. These
with similar pose and expression from a large database gPressions are chosen to be common facial motions that

images on the Internet. Yang et al. [1] derive an expressi gry yvldc_aly among d|ﬁgrent individuals. Thgy Coma".]
combinations of the facial muscle group action units in

flow and alignment flow from the 3D morphable model be: cS and i it Specifically. th
tween source and target photos, capable of transferrirg f:fc,A and some asymmetric patierns. opectically, they
mouth stretch, smile, brow lower, brow raiser, anger,

components between the images naturally and seamles8ly left. i iaht. iaw f d i left th riaht
Shilizerman et al. [15] generate face animations from lar €tt, jaw Tight, jaw forward, mouth [eft, mouth right,
impler, chin raiser, lip puckerer, lip funneler, sadndigs,

image collections. Dale et al. [16] replace the face in Il arin. cheek blowi p losed. We h i
portrait video sequence through a 3D multilinear model [5 ofl, grin, cheek blowing and eyes closed. We have a guide
e mesh for each specific expressi@yg, for the neutral

We demonstrate that FaceWarehouse can provide a r . .
expression, and;, Gy, ...,G1g for the other expressions.

collection of expression data to facilitate and improvesthe . . .
P P The guide models are shown to each subject sequentially,

lications.
applications and the person is asked to imitate each expression and
rotate her head within a small angle range while keeping
lll. FaceWarehouse the expression fixed, assisted by our staff when necessary.

In this section, we describe our pipeline for construcfhe advantages of the chosen Kinect system, such as low-
ing FaceWarehouse and the techniques involved. We u=ist and mobility, come at the price of low quality in the
Microsoft's Kinect System to capture the geometry andaptured data plagued by severe noise. To reduce noise,
texture information of various expressions of each subjegte aggregate multiple scans by using the Kinect Fusion
We register the frames from different views of the samagorithm [17] to register the 3D information of a specific



expression of a person from different views (captured itamera. We use the method described in [1] to determine
the head rotation sequence), and generate a smooth, Itive indices of the contour feature points on the méskive
noise depth map. Kinect Fusion works by fusing all théirst project the face region &f to the image to get the 2D
depth data streamed from the camera into a single glolfate mesh. Then we find its convex hull to get the points
implicit surface model, which is then ray traced to generatdong the contour of the mesh. Among these points, we find
a smooth depth map for a chosen frame. the nearest one for each contour feature on the image, and

assign it as the corresponding feature point on the mesh.
B. Expression mesh and individual-specific

blendshape generation The energy term for matching the depth map is defined as

Ny 2
From smooth depth maps and corresponding color images, Epos= ) HVd,- —Pj H ; 2)
we generate the associated expression meshes. For each ex- =1

pression data, we first use Active Shape Model (ASM) [18}herevy; is a mesh vertexp; is the closest point tog; in

to locate 74 feature points on the color image, including tiiee depth map, andy is the number of the mesh vertices
face contour, eye corners, brow boundary, mouth boundaityat have valid correspondences in the depth map. Note
nose contour and tip. The automatically detected locatiotigat not all mesh vertices are accounted for in this energy
may not be accurate in all cases, especially for thoggrm as some vertices are occluded and cannot get valid
expressions with relatively large deformation (e.g., rheut positions from the depth map.

open and smile). We thus require a small amount of usﬂ:cording to [4], another energy term is necessary to

Interaction to ref!ne _the positions of some feature Po Intse ularize the PCA coefficients;, based on the estimated
the user interaction is as simple as drag-and-dropping t o .

. . probability distribution of a shape defined loy,
feature points on the image.

1

The 74 feature points are divided into two categories: the p(a) ~ exp{—i > (ai/i)?). ®3)
m; internal feature points (i.e., features on eyes, brows
nose and mouth, c.f. the green points in Fig. 3) locat
inside the face region, and thm; contour feature points
(the yellow points in Fig. 3). Given the corresponden
between the color image and the_ depth map, we can easily Ecoef = }aTAa. 4)
get the corresponding 3D positions from the depth map

for internal feature points. We classify all contour featur
points in the image as 2D.

erea? is the eigenvalues of the face covariance matrix
rom PCA. Let A = diag(1/0%,1/0%,...1/0?), then the
C‘gikhonov regularization energy term is defined as

Putting the three energy terms together, the total energy is
defined as
Neutral expression.We first generate the face mesh for the

neutral epr)Jression by using a two-step approach. Blanz and B = inEreat t2Bpost WaEcoet, )
Vetter's morphable model is automatically fitted to producerhere wy, w» and wz balance the different energy terms.
an initial matching mesh. Then a mesh deformation alg@¥e choosew; = 2,0, = 0.5 and wz = 1 in our database
rithm is employed to refine this mesh for better matchingonstruction. This energy can be minimized via a sequence
between the depth map and the feature points. of least squares optimizations. The least squares step is

it]erated 5 to 8 times in our construction. Note that between

Elanz and tV:ttelrs_moFr)r(J:Tble r;ggel petrf(?r][ns F)”r'fj'lol%onsecutive iterations, the mesh vertices corresponding t
omponent Analysis ( . ) on neutral face Moaelg,nioyr feature points in Eq. (1) and each mesh vertex’s
Any face can be approximated as a linear comblnatl%n

of the average face antl leading PCA vectorsV = losest point in Eg. (2) need to be updated.
F+z}:1ai|:., whereF is the average face, arfg is the After an initial mesh is computed, it is refined by a
i-th PCA vector. Our goal is to compute the coefficieats Laplacian-based mesh deformation algorithm [19]. Similar
to get the closest mesh in the PCA space. The energyt@othe optimization process described above, the deforma-
be minimized for feature point matching is defined as tion algorithm tries to minimizeEfea and Epos to match
m me Fhe feature points and. theT depth map. A Laplacian energy
Efea= Z [vi, *CJHZJF Z ||Mpr0chk*5(H2- (1) s used as the regularization term,
=1 k=1

n 2

; (6)

o
Lvi— -2 Ly
VT o

) : : Ejap =
The first term corresponds to internal feature matchigg. 'ap ;

|

is the 3D p(_)smon of thg-th feature pom_t, v_vh|le/.1 IS its where L is the discrete Laplacian operator based on the
corresponding vertex on the megh The indices for these : . . .
. . . cotangent form introduced in [20% is the magnitude of
internal feature points on the mesh are simply marked gn =~ - : : .

: : : e original Laplacian coordinate before deformation, and
the average face in our implementation. The second tefm :
. L : n’is the vertex number of the mesh. The mesh deformation
is for contour feature matchingy is a 2D feature point on

. o . energy is then computed as
the color imagey,, is its corresponding 3D feature vertex 9y P

on the meshV, andM 0 is the projection matrix of the Ez = W Efea+ WEpos+ WhEiap. (7)
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Fig. 2: Two examples of neutral mesh fitting. From lei
to right: input depth map; initial mesh produced by th(l
morphable model; refined mesh using mesh deformatidh;
error map of the initial mesh; error map of the refined mesh.
The root-mean-square (RMS) errors for the first example
are 1.19mm (initial) and 0.39mm (refined), and for the
second example: 1.49mm (|n|t|al) and 0.41mm (refined). Error (With feature points) Error (Without feature points)

(a) Without feature point constraints, the deformed mesh may no

match the captured data well, such as the mouth in this exampl
—— With Feature Points —=a— Without Feature Points

In our construction, we chos®; =05, w) = wj=1. This _, 16
energy can be minimized using the inexact Gauss-Newtog s % 2]

method as described in [19]. Es ﬁ@
v 4

Mesh deformation helps fine-tune the initial guess. Fig. § 3
show two examples of neutral mesh generation. From thg * 7‘*%’*‘7‘?
figure, we can see that the refined process in the secofic’ | 5 ¢ 5 s 1 15 1= 17 19 135 7 9 111315 17 19
step drastically reduces the mismatch, resulting in a bette Expression Expression

matching face mesh.
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(b) The lack of feature point constraints leads to results tegpp

Other expressions.Once we obtain the f mesp for in local minima in the deformation process and causes greate
er expressions.unce we obta € face me 0 matching error, for both the feature points of color imagedahe

the neutral expression, we proceed to compute the faggth map.

meshesS;, S, ...Syg for the other 19 expressions. We first_ . . .

use the deformation transfer algorithm described in [21] {g9- 3* The effect of feature point constraints in mesh
generate the initial meshes for these expressions so t s{ormatlon.

the deformation fromg to S (i = 1...19) mimics the

deformation from the guide mod&g to G; as much as ) )

possible. The same mesh deformation algorithm describ@§asuring how much the neutral faé is deformed

above is then used to refine these initial meshes. toward B;. The rigging algorithm begins with a generic
blendshape modeh = {Ag,As,...,As6}, and employs an

The mesh deformation algorithm uses all facial featuigptimization procedure to minimize the difference between
points on the color images as additional position corach expression mes}) and the linear combination d;
straints. We found in our experiments that these cons#raifyith the known weights for expressiop as well as the
not only greatly reduce the matching errors between tlfference between the relative deformation fr@to B;

image feature points and their corresponding mesh verticgsd that fromAg to A;. See [9] for details of the algorithm.
but also help avoid local minima in the deformation process

and improve the matching between the mesh and the defih Blinear face model

map, as demonstrated in Fig. 3. : .
P g We obtained the facial geometry of 150 persons and each

Individual-specific expression blendshapesFrom the contains the same 47 facial expressions (1 neutral and 46
expression meshes generated for each person, we o#wers) by using the procedure described in the previous
use the example-based facial rigging algorithm proposedction. All these face meshes share the same topology
by Li et al. [9] to build a linear blendershape modeand thus the same number of vertices. Similar to [5], we
representing the facial expression space of this persean assemble the dataset into a rank-three (3-mdd&)

The result is a neutral face plus 46 FACS blendshaptenisor T(11K verticesx 150 identitiesx 47 expressions).

B ={By,Bs,...,Bss} for each person, capable of replicatingrhe data tensor is arranged in an obvious fashion, so that
most human expressions through linear interpolation of tleach slice with varying second factor and fixed third factor
blendshapes. In other words, an expressioof the person contains face vectors with the same expression (for diftere
can be expressed by a linear combination of the blenidentities), and each slice with varying third factor ane#x
shapesH = By + zf‘flai(Bi —Bp), wherea; is the weight second factor contains the same identity (with different



expressions).

We use theN-mode singular value decomposition (SVD'{ &+
to decompose the tensor. As most visual applications or \ J
need to synthesize the entire face, we perform the deca...
position without factoring along the vertex mode (mode-1). 15
The N-mode SVD process is represented as

T x2Ufj x3Ugp=C, (8)

20 30 40 50 60 Iden.
>

whereT is the data tensor ard is called thecore tensor
Uig and Ueyp are orthonormal transform matrices, whic
contain the left singular vectors of th@@mode (identity)
space and 18 mode (expression) space respectively.
mode SVD helps “rotate” the data tensor and sort the
variance ofC in decreasing order for each mode. This 25
allows us to truncate the insignificant componentsCof

and get a reduced model of the dataset to approximate the
original data tensor as

T ~C x2Uig x3Uexp, 9) 30

h20

whereC; is the reduced core tensor produced by keepingExpr.

the top-left comer of the original core tensbky and U‘?XP Fig. 4: Fitting a facial expression mesh with our bilinear
are the truncated matrices froldly andUexp by removing o6 with different numbers of components. Top left is the
the trailing columns. input mesh, and the following shows the fitting results using
We callC; the bilinear face model for FaceWarehouse. Witifferent numbers of components in identity attribute and
C:, any facial expression of any person can be approximatexpression attribute.

by the tensor contraction

T T
V=G X2 Wig X3Wexp, (10)  weights via the linear regression model, and then a new
where Wig and Wexp are the column vectors of identity 3D face mesh is reconstructed based on these weights. This
weights and expression weights, respectively. new 3D face mesh is finally rendered with color textures

) o _from the input image to generate a new face image with
Fig. 4 shows an example of fitting a face mesh usinge relevant features changed.

different numbers of components in the core tensor. We ) ) )
found that choosing 50 knobs for identity and 25 knod:sac'a| feature analysis. To ana!yze facial attributes used
for expression provides satisfactory approximation tissuf natrual language (e.g., the width of mouth, the length of

in all of our applications. face), we use the algorithm of multi-variate linear regres-
sion [22] to map these attributes to the identity attribute
\VA Applications in our bilinear face model. For every person captured in

FaceWarehouse, we have his (or her) identity weights (a
FaceWarehouse can be employed in various visual coM-vectorwiq) and| user-specified attributesfy, fo, ..., fi }
puting applications. In this section, we show four exampl&hich are calculated from the face geometry of this person.
applications: facial image manipulation, face componeite need to construct lx (I +1) matrix M te4 mapping
transfer, real-time performance-based facial image aninthese user-specified attributes to the identity weights,
tion, and facial animation retargeting from video to image.

T _w.
Refer to the supplementary material for the video demo. Mtealf1,.... fi, 1" = Wig. (11)

A. Facial image manipulation We assemble the vectors of identity weights and the vectors
) o ) ] ) of user-defined attributes of all 150 persons into two matri-

In this application, the user can mgnlpulate facial attebu_ ces, i.e.Wig (k x 150) andF ((I + 1) x 150) respectively.

such as the Iength Qf faqe, the size of r_nouthZ the helgﬁge mapping matriM ea can be solved as

of nose and ethnicity, directly in the single input face

image. As we only have the two attributes of identity Mfea= WigF" (12)

and expression in FaceWarehouse, we first learn a linegr Lo . . 4
) o where F* is the left pseudoinverse oF, i.e., F* =

regression model that maps a set of user-specified faQ(FFT)l

attributes to the identity attribute in the bilinear facedab '

We then compute the identity and expression weights in oWfith M e, We can directly map the changes of the user-

bilinear face model for the input face image. The changepecified attributed\f to the changes of identity weights

to the user-defined attributes are mapped to the identliyiq, i.e., Awjq = M teaAf. By addingAwig to the identity



7

Fig. 5: Facial image manipulation. We can edit the facial attritaita the still image. Left: the original image. Top row,
from left to right: more Caucasian-like, bigger mouth, widese, longer face. Bottom row, from left to right: higher
nose, smaller mouth, narrower nose, shorter face.

weights of the input face image, we can generate a nswch as smiling. As modifying expression causes global
face with related attributes changed appropriately. changes in one’s face, if we directly copy the local com-
- . f he ref i I i h

Fitting 3D face mesh to image. To calculate a 3D face ponent from the reference image and paste/blend it to .t €

; . target, the transferred component may not be compatible

mesh using our bilinear model that can match the face :

image well, we first localize a set of facial feature points iwlth the face contour or other components in the target
g : P age. A better approach proposed by Yang et al. [1] is

e e e od 1 3D face model l guide e component rnsier
as well as the identit arglld expression weights in the biﬁnegrocess. We follow this approach and use our bilinear face

Mty P . 9 odel to synthesize 3D face models matching the input
face model to minimize the matching error between the

i ) iImages.

feature points on the image and the face mesh.
rAs the two input images represent the same person, their
igentity weightswl, should be the same. We therefore
need to compute the unified identity weightg, and the
expression weights\(, , ; andwg, , ,) for the two images.
Pk = SRV +t (13) This can be done by minimizing the following energy

Following previous work [5], we assume that the came
projection is weakly perspective. Every mesh vengxs
projected to the image space as

where the rigid transformation consists of a scaling facto
s, a 3D rotation matrixR and a translation vectdr The
mesh vertex positiony can be computed from the bilinear (15)
face model according to Eq. (10).

- 12
t K k)2
Elio'” =3 '§1||SjRj(Cr X 2Wig X3Wexp j)( ) 1 —s% )|| .
]:

) ) ) We first use the method described in the last section to
The matching error of the feature points on the image ag@mpute an initial estimation of the identity and expressio
the mesh is defined as weights for each image separately. Then we Vg 1
1 T T K K12 and weyp—> and compute the unified identity weighmgTd
Ek_E'HSR(C' X2Wig X3Wexp) " +1—sT%  (14) by minimizing EQ. (15). NeXtWexp-1 and Wexp 2 are
. T
wheres¥ is the feature point positions on the image. solved again separately withg fixed. The latter two steps
are performed iteratively until the fitting results conwerg
This energy can be easily minimized using the coordinatlt our experiments, three iterations produce satisfactory
descent method as described in [5]. results.

B. Face component transfer The two fitted face meshes can be reconstructed as

This application performs face component copy-and-paste Vi = Cr 2 Wig X3Wexp-1,
to modify the expression in a facial image. It takes two Vo =G XZW;L ><3ngp_2-
images of the same person as input: one is the target photo

that contains an undesirable expression and the other ¢wdlowing [1], we use the two face meshes to calculate
is the reference image that contains the desired expressimr?D expression flow in the target image, which warps

(16)



Fig. 6: Face component transfer. First column: two input imageshef 4dame person with different expressions. Second
column: fitted meshes. Third column: target image warpedheyexpression flow and the reference image warped by
the alignment flow. Fourth column: the transferred resultday method. Last column: the result produced by the 2D
copy-and-paste method.

(a) Reference (b) Target (c) Transfer

Fig. 7: An example of face component transfer with a
asymmetric expression.

the target face to match the desired expression. A -
alignment flow is also calculated from these two meshes
warp the reference face to an appropriate size and posit
for transferring. Finally we select a crop region from th-#88=.
warped reference image and blend it to the warped targag. 8: Using a Kinect camera to track a users facial
image to generate the transferred result. Fig. 6 shows afressions, which are then transferred to a still facial
mouth-open example; our method produces a much marigage, all in real time. This application allows a user

realistic result than the 2D copy-and-paste method. Figtd create an image avatar from a single facial image of
shows another example with an asymmetric expression.another person.

C. Real-time performance-based facial image
animation for the person of identityiqy as follows

Bi =G x2Wig x3 (Uexdi), 0<i <47, 17
In this application, a still face image is animated in remleti ! (Vexgth), "

by the facial performance of an arbitrary user (see Fig. 8yhere Uexp is the truncated transform matrix for the ex-
Again, we first use the algorithm described in Section IV-fression mode as described in Section IlI-C, @nds the
to compute the identity and expression weights to produegpression weight vector with value 1 for thé¢h element
a 3D face mesh matching the feature points in the inpand O for other elements.

image. We then generate the individual-specific expressq} : . .
e generated expression blendshapes, which wentadje
blendshapes for this face mesh using the bilinear face mo( engshapescan trr:en be used to geEerate new expressions

;Ilslt:ér:ﬁlg, (\;\;% ;umrzltterr]réegégrli zg;&g;xs;ggsg;gg:ﬂ: %the same identity by setting different coefficieifisfor

- . lendshape¥:= By + %, (B — Bo).

blendshape coefficients, which are then transferred to the - blendshape¥: = Bo+ i, fi(Bi — Bo)

individual face model fitted for the image. We then use a real-time performance-based facial animation
system [23] to capture the dynamic expressions of an

Assuming that the identity weights computed from the faabitrary user, who has another set of expression blend-

image arewiq, we can construct the expression blendshapsisapes Y = {Up,Us,...,Uss}) constructed by the system



V.

We

Conclusion and Future Work

introduce FaceWarehouse, a 3D facial expression
database for visual computing applications. The database
contains the facial geometry and texture of 150 subjects,
each with 20 expressions. This raw dataset is used to con-
struct 47 expression blendshapes for each person, capable
of representing most expressions of human faces. All these
blendshapes are then assembled into a rank-three tensor,
which is decomposed to build a bilinear face model. This
bilinear face model can be used to accurately estimate face
identities and expressions for facial images and videos. We
demonstrate its relevance in a wide range of applications,
such as facial image manipulation, face component transfer
real-time performance-based facial image animation, and

Fig. 9: Facial animation retargeting from video to image.facial animation retargeting from video to image. We expect
many other applications to benefit from FaceWarehouse
in the future, such as face tracking in motion capture,

during preprocessing. The system is able to track the rigiPression recognition and analysis.
transformation of the user’s head and the facial expressigh ;a to the low precision in depth information provided by

expressed in the format of blendshapes coefficights o

current Kinect system, our face data do not contain

which are then easily transferred to image blendshapggieq facial geometries such as wrinkles. In the futitre,

B to synthesize facial animations that mimic the user

S possible to employ capturing techniques for high-qualit

performance. facial geometry (e.g., [24], [25], [26]) to acquire data lwit
To render the image animations in a realistic manner, tfiger details.

hair and teeth need to be processed in a proper way. We
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