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Figure 1: Given a 20-frame walking motion pre-fix (white), our model can generate diversified motion: walking (yellow),
walking-to-running (blue), walking-to-boxing (green), and walking-to-dancing (red), with arbitrary duration. The correspond-
ing animation can be found in teaser.mp4 in supplementary video.

ABSTRACT
Humanmotion modelling is crucial in many areas such as computer
graphics, vision and virtual reality. Acquiring high-quality skele-
tal motions is difficult due to the need for specialized equipment
and laborious manual post-posting, which necessitates maximiz-
ing the use of existing data to synthesize new data. However, it
is a challenge due to the intrinsic motion stochasticity of human
motion dynamics, manifested in the short and long terms. In the
short term, there is strong randomness within a couple frames, e.g.
one frame followed by multiple possible frames leading to different
motion styles; while in the long term, there are non-deterministic
action transitions. In this paper, we present Dynamic Future Net,
a new deep learning model where we explicitly focuses on the
aforementioned motion stochasticity by constructing a generative
model with non-trivial modelling capacity in temporal stochas-
ticity. Given limited amounts of data, our model can generate a
large number of high-quality motions with arbitrary duration, and
visually-convincing variations in both space and time. We evaluate
our model on a wide range of motions and compare it with the
state-of-the-art methods. Both qualitative and quantitative results
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show the superiority of our method, for its robustness, versatility
and high-quality.

1 INTRODUCTION
Modeling natural human motions is a central topic in several fields
such as computer animation, bio-mechanics, virtual reality, etc,
where high-quality motion data is a necessity. Despite the improved
accuracy and lowered costs of motion capture systems, it is still
highly desirable to make full use of existing data to generate di-
versified new data. One key challenge in motion generation is
the dynamics modelling, where it has been shown that a latent
space can be found due to the high coordination of body motions
[21, 36, 41]. However, as much as the spatial aspect is studied, dy-
namics modelling, especially with the aim of diversified motion
generation, still remains to be an open problem.

Human motion dynamics manifest several levels of short-term
and long-term stochasticity. Given a homogeneous discritization
of motions in time, the short-term stochasticity refers to the ran-
domness in next one or few frames (pose-transition); while the
long-term one refers to the random in the next or few actions
(action-transition). Tradition methods model them by Finite State
Machines with carefully organized data [33], which have limited
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model capacities for large amounts of data and require extensive pre-
processing work. New deep learning methods either ignore them
[21] or do not explicitly model them [41]. Very recently, dynamics
modelling for diversified generation has just been investigated [42],
but only from the perspective of the overall dynamics, rather than
the detailed short/long term stochasticity.

In this paper, we propose a new deep learning model, Dynamic
Future Net, or DFN, for automatic and diversified high-quality mo-
tion generation based on limited amounts of data. Given a motion,
we assume that it can be discretized homogeneously in time and
represented by a series of posture and instantaneous velocities.
Following the observation that it is easier to learn the dynamics in
a natural motion latent space [21], we first embed features in the
data space into a latent space. Next, DFN learns explicitly the his-
tory, current and future state given any time, where we also model
several conditional distributions for the influences of history and
future state on the current state. The state-wise bidirectional mod-
elling (extending into both the past and future) separates DFN from
existing methods and endows us with the ability of modelling the
short-term (next-frame) randomness and long-term (next-action)
randomness. Last, for inference purposes, we propose new loss
functions based on distributional similarities as opposed to point-
wise estimation [41, 44], which captures the dynamics accurately
but also keep the randomness that is crucial for diversified motion
generation.

We show extensive experimental results to show DFN’s robust-
ness, versatility and high-quality. Unlike existing methods which
have to be trained on one type of motions a time [42, 44], DFN
can be trained using both single type of motions or mixed motions,
which shows DFN’s ability to capture multi-modal dynamics and
therefore its versatility in diversified motion generation. Visual
evaluation shows that DFN can generate high-quality motions with
different dynamics.

In summary, our formal contributions include:
(1) a new deep learning model, Dynamic Future Net, for auto-

matic, diversified and high-quality human motion genera-
tion.

(2) a new dynamic model that captures the transition stochas-
ticity of the past, current and future states in motions.

(3) insights of the importance of both short-term and long-term
dynamics in human motion modelling.

2 BACKGROUND AND RELATEDWORKS
2.1 Human pose and motion embedding
Given a human motion sequence, it is useful to find the low dimen-
sion representation of the whole sequence. Holden et al. [22] for
the first time use a convolution neural network to project the entire
sequence to a low dimensional embedding space. Using this more
abstract representation, one can blend motions or remove noises
from corrupted motions. In [20, 21], the authors further make use of
the power of the learnedmotionmanifold and decoder to synthesize
motions with constraints. Another important application of motion
embedding is motion style generation [8], in which the embedding
code can be tuned to matched the desired style. Although modeling
a motion sequence with auto-encoders is straightforward, how it
can model the dynamics of human motion is not clear. In [28], the

authors model a motion sequence as a trajectory in pose embedding
manifold, then use a bidirectional-RNN to encode the trajectory to
model the dynamics of the trajectory, which can improve motion
classification results. Moreover, they designed a graph-like network
to better represent the human body components.

The existing methods focus on the embedding of the poses and
dynamics. However, they do not explicitly model the distributions
of these latent variables which governs the stochasticity of the
dynamics. In this paper, we go a lever deeper and learn the latent
variable distributions for the embedded poses and dynamics.

2.2 Deterministic human motion prediction
and synthesis

In the effort of modelling motion dynamics, many methods employ
deterministic transitions [2, 4, 9, 13, 17, 19, 24, 30, 31, 38], especially
in human motion prediction or generation. They either focus on
short term dynamics modeling or spatial-temporal information of
the overall dynamics. In [44], the authors propose a training tech-
nique for RNN to generate very long human motions. Although this
technique solves the problem of the freezing phenomena of RNN,
their model is deterministic, which makes the training difficult:
given a past state, if multiple possible future motions are present
in the data, the network will average them, which is a common
problem in many human motion prediction methods.

One solution to this problem is to introduce control signals [14,
39]. They design several networks and make the character to follow
a given trajectory in real-time. In [35], the control signal becomes
the 3d human pose predicted by neural nets as a reference for an
agent to imitate. In [1], the authors co-embed the language and
corresponding motions to a share manifold, ignoring the fact that
language-to-motion is a one-to-manymapping. Even with a specific
control signal, like 2D human skeleton, one can still expect that
there are different motions or different pose corresponding to the
same control signal [29], essentially indicating the multi-modality
nature of human motion dynamics.

Different from the existing methods, our paper focuses on the ex-
plicit modelling of the multi-modality nature of motion transitions
in human motions. Further, we also aim to learn the stochastiity in
those transitions.

2.3 Stochastic human motion synthesis
In [42] the authors combine RNNs and Generative Adversarial Net-
works (GANs) to generate stochastic human motions. They use a
mixture density layer to model the stochastic property, and use an
adversarial discriminator to judge whether the generated motion
is natural or not. In MoGLow [18], the authors for the first time
use normalizing flow to directly model the next frame distribution.
One advantage of this method is that it can capture complex dis-
tributions without learning an apparent latent space. Given the
same initial poses and the same control signals or constraints, the
model still generate different motion sequences. Chen et al. [5]
combine Dynamic motion primitive and variational Bayesian filter
to model the human motion dynamics. They show that the latent
representations are self-clustering after training. However, in the
transitions, it needs the information of the whole sequence, which
separates it from being a pure generative model.



Our method differs from existing approaches in its treatment in
the relations between the past, current and future states of human
motions. Unlike the aforementioned methods, we explicitly model
the current state based on both the past and the future. Also, we
further model their randomness in the latent space that captures
the transition multi-modality.

2.4 Stochastic RNN model
Modelling the stochasticity in time-series data has been a long-
standing problem, such as music, hand writing and human voice
[11, 25, 40]. The VRNN [7] for the first time combines Variational
AutoEncoder (VAE) [27] and recurrent neural networks for this
purpose. Later in [23], the authors disentangle the latent variables
of the observation and the dynamics, with the observation latent
being used to recover the full observation information, and the
dynamic latent capturing the dynamics.

A key modelling choice in stochastic RNNmodels is the relations
between the past, current and future. In early work, the posterior
of current state is inferred from the past information, which makes
it lack the ability to foresee the future. In [3, 10, 37], the authors
show that the performance can be improved by incorporating the
future state with a backward RNN in the inference stage. In [12], the
authors design a model that can go beyond step-by-step modelling,
and predict multiple steps up to a given horizon. Similar effort is also
made in reinforcement learning, where the reward function takes
the discounted future reward into consideration [12, 15]. In [16], the
authors went further and designed a model that can predict multiple
future scenarios, then choose the one with highest predicted reward
from all the possibilities.

We observed that human motions follow a similar philosophy:
the current state is a result of the past motion but also a particular
choice for a certain planned future. Our research is inspired by
Stochastic RNN models but focuses on human motion transition
stochasticity.

3 METHOD OVERVIEW
Our method takes a homogeneous series of human pose representa-
tions as input. This representation contains the 3D joint coordinates
relative to the root, and the root translation velocity over ground
plane and the rotation velocity around the y-axis. We propose the
Dynamic Future Net to model the motion dynamics as a future-
guided transition and generate random natural human motions
that transit between different actions.

As illustrated in Fig. 2, DFN is composed of three modules, a
pose encoder, a pose trajectory encoder and a stochastic latent RNN.
The pose encoder (Section 5.1) maps the high dimensional human
pose to a latent space while the pose trajectory encoder (Section
5.2) embeds the trajectory in the latent pose space into a code.
Such compact representations of pose sequences can facilitate the
learning process [28]. As a key module, the stochastic latent RNN
(Section 5.3) deploys a stochastic latent state and a deterministic
latent state to learn two latent distributions for the pose-embedding
and the future trajectory embedding. Such explicit learning of two
different latent distributions on the one hand forces the model to
learn strong temporal correlation and on the other hand generates
motions with varied and natural transition. During inference we

combine the past, current and future state to infer the current
latent state distribution, and we combine the past and future to
infer the future latent state distribution. In the generation stage,
unlike existing methods [10] where the current state is generated
from the past state only, we first generate the future state and
combine it with the past state to generate the current latent state
prior, from which we sample the current latent state then decode it
to the pose-embedding and recover the current pose and velocity.
We regard this process as a self-driving motion generation process
guided by the envisioned dynamic future. In this way, the model
can learn and generate rich and varied natural motions.

Figure 2: Overview of the proposed Dynamic Future Net-
work. In the learning process, the network take human mo-
tion sequence as input and predict the long term distribu-
tion and the short term(next frame) distribution.

4 DATA PREPARATION
We train our model on the CMU Human motion capture dataset.
As the skeletons in the origin dataset are different, we first retarget
all motion to a chosen skeleton as in [21]. The skeleton contains
24 joints, we first extract the X and Z global coordinate of the root,
and rotate the human pose to the Y-axis direction as in [22], the
global position and angle of human pose can be recovered from the
X-Z velocity and the rotation velocity around the Y axis. Finally the
original human pose vector contains 76 degrees of freedom, 72 for
3D joint positions, 4 for the global translation and rotation velocity.

5 METHODOLOGY
Formally, we start by describing a motion as a homogeneous time
series: {X0, . . . ,XT }, where Xt is the motion frame at time t and
contains the joint positions and global velocities. Starting with a
joint distribution P(X<t ,Xt ,Xt+1:t+H ), we model the influence of
the past frames X<t and future frames Xt+1:t+H on the current
frame Xt by transition probabilistic distributions P(Xt |Xt+1:t+H )
and P(Xt |X<t ), where H is the duration of a short-horizon future.
The key reason of such a modelling choice is based two observa-
tions: the current frame is a result of the past motion and therefore



Figure 3: The pose-velocity auto-encoder network. The in-
put of the encoder is the 76 dimensional pose-velocity vec-
tor. The encoder outputs two code, one for pose, the other
for velocity. The pose code and velocity code is fed into a
quaternion decoder and velocity decoder separately. The 3D
joint positions are recovered from quaternions by the For-
ward Kinematics (FK) layer.

conditioned on it, captured by P(Xt |X<t ). Meanwhile, the current
frame is also a choice made for certain planned future, e.g. needing
to stop swing the legs aiming for a transition from walk to stand-
ing, captured by P(Xt |Xt+1:t+H ). In addition, since the past motion
will also limit the possibilities of the future motion, there is also
a impact of the past on the future, P(Xt+1:t+H |X<t ). Overall, the
joint probability:

P(X<t ,Xt ,Xt+1:t+H ) ∝ P(Xt |Xt+1:t+H )P(Xt+1:t+H ,Xt |X<t ) (1)

Not that the two probabilities on the right side play different roles.
P(Xt+1:t+H ,Xt |X<t ) is the probability of unrolling from the past to
the future. Given a known past, this is a joint probability of both the
current and the future, containing all the possible transitions. On
top of it, P(Xt |Xt+1:t+H ) dictates that if the future is also known,
then the current can be inferred. This explicit modelling of the
transition probabilistic distributions between the past, current and
future helps capturing the transition stochasticity, which facilitates
diversified motion generation as shown in the experiments.

Learning the transitional probabilities in the data space, however,
is difficult due to the curse of dimensionality. We therefore project
motions to a latent space, which involves embedding the frames
as well as the dynamics. We then learn the transition distributions
in the latent space. During inference, we then recover motions
from sampled states in the latent space to the original data space.
DFN is naturally divided into three components: Spatial (frame)
embedding, dynamics embedding and dynamics modelling.

5.1 Spatial Embedding
We use an auto-encoder for frame embedding, zt = PoseEnc(Xt )
and X̂t = PoseDec(zt ), shown in Figure 3. PoseEnc is multi-layer
perceptron network to project the data into the latent space. Then
we separate the latent feature into two components to represent
the pose code and the global velocity code. PoseDec contains two
components, the quaternion decoder and the velocity decoder. The

quaternion decoder takes the pose latent feature as input and out-
puts joint angles (represented by quaternions), and the velocity
decoder takes the latent velocity feature as input and outputs the
velocity. The quaternion decoder essentially is a differential Inverse
Kinematics module. As stated in [34], using joint rotations instead
of joint positions maintains the bone lengths. After the reconstruc-
tion, we use a Forward Kinematics layer to compute the 3D joint
positions. To train the auto-encoder, we use a Mean Squared Error
loss function:

Lsl =
1
T

T∑
t=0

| |Xt − X̂t | |22 (2)

where T is the number of frames in a motion.

5.2 Dynamics Embedding

Figure 4: A seq-to-seq network for trajectory embedding.

After learning the pose latent space, we project the dynamics as
trajectories in this space using a Recurrent Neural Network shown
in Figure 4. We employ a sequence-to-sequence architecture as it
forces the model to learn long-term dynamics. The RNN consists
of Gated Recurrent Unit (GRU) [6], encodes a sequence of encoded
frames {zt , . . . , zt+H } into a latent representation mt , and then
unroll to reconstruct the same sequence {z′t+1, . . . , z

′
t+H } from

mt given zt . To zt = PoseEnc(Xt ),mt is a future summary over
multiple frames. We use the following loss function:

Lt l = Lr ec + Lsmooth (3)

where Lr ec =
1
T

T∑
t=0

| |zt − z′t | |22

Lsmooth =
1
T

T∑
t=0

| |Vt − V̂t | |22

whereT is the frame number of a motion,Vt and V̂t are the original
and reconstructed joint velocities. To facilitate training, we use Eq.
2 to pre-train the posture auto-encoder an fix its weights when
training the RNN module.



5.3 Dynamics modelling
Generative Model. After embedding the poses and dynamics into
a latent space, we now explain the dynamics modelling, which is the
key technical contribution of this paper. We propose a new dynam-
ics model that captures the joint distribution P(X<t ,Xt ,Xt+1:t+H ).
Rather than directly learning the distribution in the data space, we
aim to learn the latent joint distribution P(z<t , zt , zt+1:t+H ), where
we abstract the past, current and future features separately. First,
given the Markov property, we assume that all past information z<t
is encoded into ht which is a deterministic (known) past state. Next,
we assume that the future information zt+1:t+H can be summarized
into a future state ft , and ft is drawn from a distribution over all
possible future states conditioned on ht . Last, we also assume that
there is a current state st which captures the current information
zt and st is drawn from a distribution of all possible current states.
Then we can therefore assume:

P(z<t , zt , zt+1:t+H ) = P(zt+1:t+H , zt |z<t )P(z<t )
∝ P(zt |zt+1:t+H )P(zt |z<t )P(zt+1:t+H |z<t )
= P(st | ft )P(st |ht )P(ft |ht )
= P(st | ft ,ht )P(ft |ht ) (4)

where we directly use st , ht and ft to replace the corresponding
z variables by assuming mappings between them which will be
explained later. Different from existing methods [10, 37], our di-
rect conditioning of the current state on the future and past state
P(st | ft ,ht ), and the future state on the past state P(ft |ht ) allows
us great flexibility in modelling the stochasticity in transitions. The
generation model is shown in Fig.5 a.

Future Feature Prior.Givenht , we first predict the future state,
via P(ft |ht ). Here, we assume a diagonal multivariate Gaussian
prior over ft [5, 14, 26]

p(ft |ht ) = Gaussian(ft ; µft ,σ
f
t ),

where [µft ,σ
f
t ] = д

p
f (ht ) (5)

where µft and σ ft are the mean and covariance. дpf is a three-layer
MLP with hidden dimension 256 and LeakyReLU activation. It
contains all the possible future state given the past. It can represent a
goal or a driving signal for the generative process. Also it forces the
model to learn rich motion transitions and long term correlations,
overcoming the freezing problem of traditional RNN [44].

Current Feature Prior.Next, we explain P(st | ft ,ht ). Although
ht is a known (deterministic) past, ft is random. We therefore first
sample a specific future state ft , then decode it to an unrolled future
summarymt , and finally condition the current state st on ht and
mt . We therefore have:

P(st | ft ,ht ) ∝ P(st |mt ,ht )P(mt | ft ,ht ) (6)
P(st |mt ,ht ) = Gaussian(st ; µst ,σ st ) (7)

[µst ,σ st ] = д
p
s (ht ,m

p
t )

where P(mt | ft ,ht ) is parameterized by a four layer MLP with hid-
den dimension 128 with LeackyReLU activation. µst and σ

s
t are the

mean and covariance. дps is a two layer MLP with hidden dimension
128. After being able to sample the current state st , we can compute

the current feature zt via zt = MLP(st ,ht ), where the MLP has
three hidden layer with 128 dimensions and LeakyReLU activation.

Finally, given the current and future state, the past state is up-
dated as follows (Fig.5 c):

ht+1 = GRU(ht , st , ft ) (8)

where the GRU has two stacked layer and hidden state of dimension
128. Now the generation model in Fig.5 a is complete.

Different from existingmethods [7, 10] where the prior of current
state is a function of past state ht only, and where the future state is
shared with the current state, we let the model learn two different
distributions for current and future states. The prior of current state
is also a function of the future state, which will force the model to
make use of the future information.

5.4 Inference
In the generation model in Fig.5 a, the key variables to be inferred
are st and ft , shown in Fig.5 b. The posterior of the future state ft
is dependent on past state ht and its unrolled future summarymt .
The posterior of the current state st is dependant on the feature zt ,
the past state ht and the future summarymt . We first factorize the
dynamics as follow:

q(s≤T |z≤T ) ≈
T∏
t=1

q(st |z≤t−1, zt , z≤t+H ) =
T∏
t=1

q(st |ht , zt ,mt )

(9)
where T is the total length of motion. Here we approximate the
q(st |z≤T ) with q(st |z≤t+H ), as the correlations between st and the
far future is likely to be small, so we only consider up to t +H . Then
for each time step, we use a MLP to parameterize the posterior:

q(st |ht , zt ,mt ) = Gaussian(µst ,σ st ), [µst ,σ st ] = MLP(ht , zt ,mt )
(10)

where the MLP has two hidden layers with 32 dimensions and
LeakyReLU activation. For the future state we approximate its
posterior as follow:

q(ft |ht ,mt ) = Gaussian(µft ,σ
f
t ), [µ

f
t ,σ

f
t ] = MLP(ht ,mt ) (11)

where the MLP has two hidden layers with 512 dimensions and
LeakyReLU activation.

5.5 Temporal difference loss
Besides inferring st and ft , we also constrain the dynamics of s . We
assume a relation between two states st1 and st2 at t1 and t2 where
t1 < t2, similar to [12]:

p(st1 , st2 , t1, t2) ∝ p(st2 |st1 ,ht1 ,ht2 ) (12)

where we parameterize the posterior:

q(st1 |st2 ,ht1 ,ht2 ) = Gaussian(st1 ; µst1 ,σst1 ) (13)
where µst1 ,σst1 = MLP(st2 ,ht1 ,ht2 )

where µst1 and σst1 are the mean and covariance. Here the MLP has
two hidden layers with 32 dimensions and LeakyReLU activation.
This way we can sample sposter iort1 during inference. Meanwhile,
we hope to reconstruct st2 with the time difference δt = |t1 − t2 |

sr ect2 = MLP(sposter iort1 ,δt) (14)
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Figure 5: The stochastic latent RNN. a) Generation Model. The current pose embedding feature zt depends on the current and
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ft and past state ht b) Inference on st and ft . c) Transition of ht

where the MLP for skip prediction has three hidden layers each
with 32 dimensions and LeakyReLU activation.

5.6 Learning
Finally, we compose all terms for the loss funtion:

maxΦ Ld + LT (15)

where Φ is the set of all learnable parameters in our networks and

Ld =
T∑
t=1

[−KL(q(st |ht , zt ,mt )| |p(st |ht ,mt ))

−KL(q(ft |ht ,mt )| |p(ft |ht ))
+loд(p(zt |st ,ht )) + loд(p(mt | ft ,ht ))]

LT =
∑
t1,t2

[−KL(q(st1 |st2 ,ht1 ,ht2 )| |p(st1 )) + p(st2 |st1 , t1, t2)]

KL is the KullbackâĂŞLeibler divergence.
After training the pose auto-encoder and the sequence auto-

encoder (Section 5.1-5.2), we freeze their parameters and train the
dynamics model (Section 5.3).

6 EXPERIMENT AND RESULTS
For all our experiments, we use CMU MoCap database1. CMU
dataset is a high-quality dataset acquired using optical motion cap-
ture systems, containing 2605 trials in 6 categories and 23 subcate-
gories. Its high-quality serves our purposes well as it provides good
data ‘seeds’ for motion generation. Also, the tremendous effort that
went into capturing the data shows the need for tools such as DFN
for data augmentation. To carefully evaluate DFN, we select differ-
ent motion classes with different features and dynamics, shown in
Tab.1, to show that DFN can generate new high-quality motions
with arbitrary lengths using different motion prefixes. Next, we
evaluate DFN on data with single and mixed motion classes to see
its ability to learn the different transition stochasticity on data with
a single type of dynamics and mixed types of dynamics. Last, we
push the limit of DFN by reducing the training data, to show that

1http://mocap.cs.cmu.edu/

DFN can make use of a small amount of data to generate high-
quality and diversified data, which is crucial for data augmentation.
More example can be found in the supplementary video.

6.1 Open-loop Motion Generation
We first show open-loop motion generation, where we do not mod-
erate accumulative errors. We use a 8 to 20-frame motion prefix to
start motion generation to get 900 frames (dfn_run2box_2char and
dfn_boxing_3char in the video). The motion stability indicates that
DFN does not suffer from the problem of cumulative error that is
common in time-series generation [41]. Given the same prefix, the
diversity is shown in their transitions between different postures
(short-term) and different actions (long-term).

6.2 Dynamics Multi-modality
We investigate howwell DFN can capture different transition stochas-
ticity in different motions, using several types of motions with
different properties (shown in Tab.1). We first train DFN on them
separately then jointly. The results can be found in dfn_walk_top,
dfn_walk_close, walking1-walking2, running1-running3, dancing1
and boxing1 in the video. We observe that DFN can learn the tran-
sition stochasticity well when trained on single type of motions.
The diversity can be found in short-term and long-term transitions,
which are two-levels of multi-modality captured well by DFN. In
walking (dfn_walk_top and dfn_walk_close in video), the short-
term stochasticity is shown in within-cycle motion randomness,
which enriches the walking style. The long-term stochasticity is
shown when a turning is generated. The action-level transition has
also been captured and generated. Similar observations are also
found in other motions.

When trained on mixed data (combining all motion in Tab.1),
DFN learns higher-level action transitions between different mo-
tion classes. We can see examples (action_transition in video and
frame-level image in supplementary file) that transit from dancing
to running, from boxing to dancing or from slow walk to running,
showing the modelling capacity at two levels. Within a single ac-
tion, diversified styles are learned well. Between different actions,
transitions are learned well too. This demonstrates the benefits
of modelling randomness explicitly between the past, current and

http://mocap.cs.cmu.edu/


Motion Cyclic Main Body Part Rhythmic Dynamics
Walking Yes Lower No Low
Boxing No Upper No High
Dancing No Full Yes High
Running Yes Lower No High

Table 1: Motion types and their features.

Figure 6: Randomly selected training motions in the latent
space. Color indicate different motion class. Smooth trajec-
tories are universally obtained by embedding.

future state, which would otherwise make it hard to capture the
multi-modality and lead it to average over all types of dynamics,
resulting in meaningless mean poses and motions.

6.3 Diversified Generation
Although visually it is clear that DFN can generate diversified
motions, we also numerically show the diversity especially when
the duration of generation becomes long. First, we randomly select
training data of different classes, and show their latent feature
trajectory in Fig. 6, with embedding dimension of 16. We then
use a PCA model to project the embedding features to 2D. The
trajectories are continues and smooth without extra constraints on
the auto-encoder. It shows that the motion dynamics are captured
well in the latent space, which is critical in motion generation. Next,
we show a group of generated motions in Fig. 7. Even with the
same motion prefix, motions start to diversify from the beginning,
which is a distinct property lacking in deterministic generators in
most action-prediction models such as [32], and our sequence is in
3d which is more difficult than 2d [43].

Distributional Shift in Time. The motion diversity increases
in time. To show that there is a distributional shift of poses, we
randomly pick an initial sequence from training data, then randomly
generate 4096 sequences each with 128 frames. We visualize the
current latent state s and latent feature z at t = 32 and t = 128 in
Fig. 8. Note that the distributions of s and z capture the stochasticity
at two different levels, one at the stochastic state level and the other
at the latent feature level. The red dots represent them at t = 32
and the yellow dots at t = 128.

Figure 7: Pose embedding trajectory of randomgenerated se-
quences given same initialization with 20 frame. The circle
mark the first frame. We see that as time goes, these trajec-
tory depart from each other.

Pose embedding distribution

t=32 t=128

Pose embedding latent distribution

Figure 8: Four groups of motions generated from four dif-
ferent motion prefixes, each group with 4096 motions, and
their z (Left) and s (Right) at t = 32 and t = 128. We can see
that the earlier distributions are more concentrated and di-
verge fast as time passes.

For both z and s , the red (t = 32) are concentrated more, showing
that the difference between the 4096 generated motions are still
somewhat similar in the early stage. However, the yellow (t = 128)
show that the generated motions start to diversify later. Not only
they shift out of the original red region, indicating that they are in
now in different pose regions, they also start to divergemore, shown
by different modes in yellow areas, meaning they have diverged
into several different pose regions.

Distribution Matching in Time. Another way to test the di-
versity of generated motions is to see their statistical similarity to
the training motions. Since the motion prefix is from one particular
motion, the more similar the generated motions are to the whole
training dataset, the more diverse they are, because the generated
motions have leave the original motion region where the motion
prefix is.

We employ the mean-distance distribution as a measure, as in
[43]. For each time step, we calculate the mean pose of all generated



Figure 9: Four groups of motions generated from four dif-
ferent motion prefixes, each group with 4096 motions. The
x axis represents the time dimension, and the y axis repre-
sent themean distance to average pose at each time step. The
band represents the variations.

motions, then calculate the Euclidean distances between the mean
pose and all other poses at that time step. We then plot the mean
distance and variance in Figure 9. The blue background indicate the
mean and variance of mean-distance distribution of the training
dataset. It shows that as time goes, the mean-distance distribution
of generated poses gradually matches that of the training data. This
further shows the generation diversity.

6.4 Generation on Limited Training Data
DFN aims to solve the problem of data scarcity, so it should only
require as little data as possible for generation. We therefore push
DFN to its limit by reducing the training data, to see the minimal
amounts of data needed. To investigate each individual type of
motions, we train DFN on walking, running, and boxing data sepa-
rately. We start from full training data where the longest sequence
lasts for around 10 minutes, and gradually reduce the duration by
sampling until the quality of the generated motions start to dete-
riorate. Although DFN responds to reduced training data slightly
differently on different motions, we finally able to reduce the train-
ing data to a tiny amount, with the longest sequence being only
15 seconds (12 second for walking, 15 second for boxing and 7 sec-
ond for running). DFN can still generate stable motions even when
trained on merely a 7-second long motion. (The result can be seen
in reduced_data in video) The impact of reducing the training data
is mainly on the diversity of the motion. (However we can see in
supplementary video that the generated boxing motion still has a
certain of diversity). Less training data contains fewer transition
diversities (both short-term and long-term). The generated motions
therefore are less diverse. This is understandable as DFN cannot
deviate too much from the original data distribution to ensure the
motion quality.

6.5 Comparison
To our best knowledge, the only similar paper to ours is [42] which
also focuses on diversified motion generation. However, the biggest
difference is that DFN explicitly models the influence of the future
on the current. This enables DFN to explicitly model the transition
randomness at different stages and levels. This is the key reasonwhy
DFN can be trained well on multiple types of motions, separately
and jointly, which has not been shown in [42]. However, a direct
numerical comparison is difficult due to the lack of widely accepted
metrics for diversified motion generation. In addition, the method
in [42] uses heavy post-processing while DFN does not.

7 CONCLUSION AND DISCUSSIONS
In this paper, we propose a new generative model, DFN, for diver-
sified human motion generation. DFN can generate motions with
arbitrary lengths. It successfully captures the transition stochastic-
ity in short and long term, and capable of learning the multi-modal
randomness in different motions. The training data needed is small.
We have conducted extensive evaluation to show DFN’s robustness,
versatility and diversity in motion generation.

There are twomain limitations in ourmethod. There is no control
signal, and sometimes it can overly smooth high-frequency motions.
We will address them in the future. Our explicit modelling of the
future makes it convenient to introduce desired future as control
signals;while replacing some of the Gaussian components with
multi-modal priors might mitigate the over-smoothing issue.
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