
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1

Real-Time Hair Simulation with Neural
Interpolation

Qing Lyu, Menglei Chai, Xiang Chen†, and Kun Zhou, Fellow, IEEE

Abstract—Traditionally, reduced hair simulation methods are either restricted to heuristic approximations or bound to specific
hairstyles. We introduce the first CNN-integrated framework for simulating various hairstyles. The approach produces visually realistic
hairs with an interactive speed. To address the technical challenges, our hair simulation pipeline is designed as a two-stage process.
First, we present a fully-convolutional neural interpolator as the backbone generator to compute dynamic weights for guide hair
interpolation. Then, we adopt a second generator to produce fine-scale displacements to enhance the hair details. We train the neural
interpolator with a dedicated loss function and the displacement generator with an adversarial discriminator. Experimental results
demonstrate that our method is effective, efficient, and superior to the state-of-the-art on a wide variety of hairstyles. We further
propose a performance-driven digital avatar system and an interactive hairstyle editing tool to illustrate the practical applications.

Index Terms—real-time hair simulation, neural interpolator, generative models, computer animation, CNN, GAN

F

1 INTRODUCTION

Hairstyle is an essential ingredient of fashion that reflects
the individual personality of human beings in real life. With
the increasing popularity of AR/VR applications, digitizing
the hairs becomes a vital job of 3D avatar modeling. Em-
powered by recent advances in 3D synthesis techniques, a
wide variety of hairstyles can be faithfully captured from
single images [1], [2]. Nonetheless, the social nature of
the digital avatars still requires these hair models to be
responsive to all kinds of user interactions.

Endless efforts have been made to pursue the realism
of hair animation, ranging from non-smooth frictions [3],
impact and collisions [4], to complex hair-liquid interactions
[5]. Although these methods can generate highly realistic
details, they do not directly apply to interactive applications
due to the cost of computations. Traditional hair simulation
methods for real-time usages usually simplify the intri-
cate hair-hair interactions through heuristic models such as
clumped structures [6], [7] and continuum formulations [8],
[9], which often lead to deteriorated hair details. Recently,
Chai et al. [10], [11] present a data-driven method to reduce
the complexity of hair-hair interactions by the knowledge
extracted from full simulation data. It physically simulates
a small set of guide hairs and interpolates all other hair
strands from them. The method succeeds in producing
visually realistic hairs at interactive speed. However, it
first determines the guide hairs by graph partitioning and
then fixes the set of weights for interpolation, which binds
the reduced model to a specific hairstyle and prohibits its
generalization to unseen data. A cumbersome and expen-
sive retraining process is thus unavoidable for any novel
hairstyle.

To address the above challenges, we introduce a neural

• Q. Lyu, X. Chen and K. Zhou are with the State Key Lab of CAD&CG,
Zhejiang University.

• M. Chai is with Snap Research.
†Corresponding author. E-mail: xchen.cs@gmail.com

interpolator to compute the weights on-the-fly and interpo-
late the guide hairs accordingly. We predict these dynamic
weights by taking the rest shape of the hairstyle and the
run-time states of the guide hairs as input. By training on
the data from full simulations, we extract the knowledge
of intricate hair-hair interactions from the simulation data
and embed it into a fully convolutional neural network. The
learned parameters of the resultant CNN form a unified rep-
resentation space for all the training data, which naturally
generalizes to unseen hairstyles due to its inherent localness.
This neural interpolator plays the role of an expressive
and robust backbone in our hair simulation framework.
To further enhance the realism of hair details, we train
another light-weighted generator based on the generative
adversarial networks (GAN) architecture. The fine-scale dis-
placements produced by this generator is superimposed
onto the backbone’s output to obtain the final results.

We demonstrate both the efficacy and efficiency of our
method by simulating a wide variety of hairstyles at inter-
active speed. Experiments show that our neural interpolator
produces much more perceptually realistic results than the
state-of-the-art methods. Furthermore, we demonstrate the
practical applications of our approach with a performance-
driven digital avatar system and an interactive hairstyle
editing tool.

Our main contributions are:

• The first CNN-integrated framework for simulating
various hairstyles. Compared with the expensive full
simulations, our method produces perceptually sim-
ilar results with an interactive speed.

• A neural interpolator that predicts the dynamic
weights for hair interpolation, which enables both
the expressive representation and the robust general-
ization.

• An adversarially trained displacement generator that
produces fine-scale hair details enhancing the visual

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2

realism.

2 RELATED WORK

2.1 Physics-Based Hair Simulation

Realistic hair simulation has been an active area of computer
graphics research in the last decades [12], [13]. A compact
yet expressive mechanical model of individual strands is at
the core of high-fidelity hair dynamics. Representative stud-
ies include mass-spring models [14], [15], [16], projective
dynamics [17], [18], rigid body chains [7], [8], and Kirch-
hoff inextensible elastic rods [19], [20]. Recently, researchers
have extensively explored the complex hair-hair interactions
such as stiction [16], self-collision [21], Coulomb friction [3],
[22], and transversal impact [4] to enhance physical realism
persistently. In this work, we rely on these advances to
efficiently produce high-fidelity simulations for a small set
of representative hairs. Specifically, the generalized altitude
spring model [16] is adopted due to its efficiency and versa-
tility, though we can substitute it with other alternatives.

2.2 Reduced Hair Simulation

Previous works put much effort into the acceleration of com-
plex hair simulation. For example, the computation of hair-
hair interactions is often simplified via continuum strategies
like smoothed particle hydrodynamics [8], [9], regular grid
[23], [24], hybrid Eulerian/Lagrangian approach [21], and
hair meshes [25], [26]. The methods most relevant to this
work simulate a small set of clumped wisps at the coarse-
level and generate the individual strands with heuristic
or statistical models [6], [7], [15], [19], [27], at the cost of
degrading or over-smoothing the hair details.

Chai et al. present a reduced data-driven method [10]
to extract a small set of guide hairs from full simulations
and compute the corresponding weights for interpolating
other normal hairs. In [11], they further extend the method
to handle hair-solid simulation by adaptively choosing the
best group from multiple sets of guide hairs at runtime and
bilaterally resolving the collisions. In their work, the finite
sets of guide hairs and the interpolation weights are both
precomputed on a specific simulation dataset. In contrast,
we do not explicitly compute and store the interpolation
weights. We instead learn a fully-convolutional network
that predicts the interpolation weights on-the-fly according
to the current states of the guide hairs. The dynamically
computed weights are thus states-aware and enable a sim-
ulation result with much more realistic details. More im-
portantly, the weight pre-computation in previous works is
global and bound to a specific hairstyle, which prohibits
its use on a heterogeneous dataset with many hairstyles.
On the contrary, we extract knowledge from representative
hairstyles and embed the knowledge into the network by
leveraging its inherent localness.

2.3 Neural Network Based Methods

Recently, neural networks and relevant techniques [28] have
seen various applications in computer graphics. Here we
only review the most relevant ones to our study. Bailey et al.
[29] propose a fully-connected network for fast correction of

the skinning result to approximate the intricate and realis-
tic shape deformation effects of general character meshes.
Similarly, our fine-scale displacement is also a correction
strategy specific for hair details. Liu et al. [30] design a
graph-convolutional neural network based on the attention
mechanism to automatically bind the shape of an arbitrary
character to a given articulation skeleton, whose binding
weights are computed for skinning. Our method can be seen
as a solution to the adaptive per-frame binding problem be-
tween the normal hairs and the guide hairs in their current
states. Traditionally, fast simulation of elastic bodies lever-
ages a manually-designed warping step to approximate the
time-variant stiffness matrix computation. In contrast, Luo
et al. [31] adopt a fully-connected neural network to learn
a warping function from the precomputed simulation data.
Their method enables generalization to various shapes by
predicting per-point warping, while our method achieves
generalization via the localness of a convolutional archi-
tecture. Fulton et al. [32] employ an autoencoder network
to extract an expressive nonlinear subspace for deformable
object simulation. Differently, our neural network produces
coefficients of a nonlinear subspace spanned by guide hair
simulations. Xie et al. [33] introduce the techniques of 2D im-
age super-resolution [34] into the fluid simulation domain.
A convolutional network is pre-trained adversarially to
generate a visually realistic high-resolution result consistent
with the low-resolution smoke simulation. In this work, we
aim for the real-time simulation problem of hair strands
with various styles, where we regard the normal hairs as
a super-resolution state of the guide hairs at the current
timestep. We also adopt a GAN-like formulation [35] to train
a secondary generator but only use it to generate fine-scale
displacements to strengthen the hair details.

Prevalent neural network architectures like VAE [36]
and GAN have been tailored for hair modeling [1], [2],
[37]. Recently, Zhou et al. [38] incorporate a collision loss
into the training process to penalize the interpenetrations
between the hairs and the head, while we design a snapping
loss term dedicated to guide-hairs interpolation to prevent
such artifacts. Lombardi et al. [39] present a VAE-based
volume representation for novel view synthesis, where a
low-res linear blend of affine warps is learned to mitigate
the memory usage. We share the opinion that the skinning
formulation can be leveraged to avoid overfitting and enable
an effective generalization. With guide strokes as the input,
Olszewski et al. [40] introduce a GAN-based architecture to
synthesize and edit 2D images of facial hairs directly. All the
above work targets the hair modeling and synthesis from
single-view or multi-view images, while we learn from 3D
data to reconstruct high-resolution hair dynamics from low-
resolution physics-based simulations.

3 OVERVIEW

A visually realistic hair model has more than dozens of
thousands of hair strands. Simulating such a large model in
real-time is challenging. We follow the spirit of data-driven
hair simulation [10] to achieve high-quality hair dynamics
in a limited time budget. In the reduced hair simulation
method, the hair dynamics are implicitly represented as
the interpolation relationships between sparsely sampled

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 3

Interpolate

hair details

Neural Interpolator

Fine-scale Displacement

Simulator

Sampling

Online Training

Rest Shape of
Normal Hairs

Details Enhanced
Normal Hairs

Ground Truth
Rest Shape of
Guide Hairs

Simulated
Guide Hairs

Normal Hairs

(section 4.2)

(section 4.3)

weights
Loss function:

Discriminator:

Fig. 1: Hair Simulation Process. Our method takes the rest shape, and the uniformly sampled guide hairs as input. At
each timestep, the low-resolution guide hairs are physically simulated with a mass-spring model first. Then the neural
interpolator receives the updated guide hair positions and predicts the interpolation weights accordingly. After that, the
high-resolution normal hairs are interpolated by the guide hairs in their vicinity using the predicted weights. Finally, the
fine-scale displacements are generated to enhance the visual realism of the hair details. The neural interpolator is trained
with a dedicated loss function, and the fine-scale displacement generator is trained in a GAN architecture.

guide hairs and the normal hairs in their vicinity. However,
this kind of relationship is only stable under a specific
hairstyle with restricted dynamics and does not generalize
to the case of multiple hairstyles. Different hair models are
diverse at shapes, styles, and physical properties, which
leads to distinctive inter-relationships among adjacent hair
strands. This fact prohibits the direct transferring of the
global dynamics from one hair model to another. Ideally,
a data-driven simulator should be able to capture the local
properties and dynamics from representative hairstyles and
generalizes them to an unseen hair model. Reflecting such
considerations, we design our hair simulation pipeline as
a two-stage process, which includes a neural interpolator
that computes dynamic weights to interpolate the guide
hairs, and a fine-scale displacement generator that further
enhances the motion details (Figure 1).

3.1 Online Simulation

The online stage starts with the physics-based simulation
[16] of the guide hairs to generate representative motions and
resolve collisions in the coarse resolution. These guide hairs
are sparsely selected and thus fast to simulate. The simula-
tion states of the guide hairs are then pushed into a neu-
ral interpolator (Section 4.2.1) to predict the interpolation
weights for each normal hair strand of the full resolution
model. This U-net-like network produces weights for each
normal hair based on the geometry of the rest normal hairs
and the current guide hairs, which is pre-trained on the full
simulation data of many hairstyles. After that, the states
of all the normal hairs are computed in the sense of linear
blend skinning by mixing the guide hair states according
to the predicted interpolation weights. Finally, a second
light-weighted neural network (Section 4.3.1), adopted for
hairs with extremely high resolution, is executed to compute
the fine-scale displacements for all the normal hairs to
promote visual realism. The above process is repeated for
each timestep during the simulation.

3.2 Training

We train the networks on several time sequences of full
simulation data. We simulate multiple hairstyles using a
mass-spring model [16] driven by random head motions.
For different hairstyles, we choose different dynamic pa-
rameters to generate visually realistic movements. Thanks
to the parameterization strategy (Section 4.1) and the neu-
ral interpolator, the heterogeneous simulation data can be
trained simultaneously. The online simulation uses the same
set of dynamic parameters as its offline counterpart, while
the held-out head motions have no intersections with the
training data. The training of the neural interpolator is
supervised under a dedicated loss function (Section 4.2.2),
and the fine-scale displacement generator is adversarially
trained with a discriminator (Section 4.3.2).

4 METHOD

We now present the key designs and algorithms that enable
the learning and fast simulation of multiple hairstyles.

Hair particleRoot particle

Fig. 2: Hair State Parameterization. Left: The discrete hair
particles, i.e., the regular grid points embedded in the 3D
Euclidean space. Right: The regular grid in the parametric
space. Please see Appendix A for the details of the scalp
parameterization.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 4

4.1 Parameterization

Learning from the complex and heterogeneous hair dynam-
ics requires a simple yet effective representation of various
hairstyles. Here we present a unified parameterization for
distinct hair models. First, we parameterize the root par-
ticles of all the hair strands as a nu × nv regular-grid on
the scalp surface (Figure 2). Second, each hair strand has
nw particles uniformly sampled by length. In this way, we
represent the hair model with an arbitrary state as a function
defined on a grid of size nu × nv × nw:

s : Ω ⊂ N3 → Rnc . (1)

Therefore, a hair state in this discrete setting is just a
fourth-order tensor s stacking all the state values at the
grid points, which is readily available for computation on
a neural network. The tensor s has a size of [nu, nv, nw, nc],
where nc, the state channels of each hair particle, is set to
3 since we only store the Euclidean coordinates 1. In what
follows, we choose the values nu = nv = 128, nw = 25 if
they are not explicitly specified. Besides the state tensor s,
we also need the rest state of each hairstyle. We denote it as
a tensor s̄ with the same size.

The state tensor s encodes the inter-hairs and intra-hair
neighborhood information into its cartesian index, which
naturally enables a convolutional network to extract multi-
levels of local features from the hairs.

In the u and v directions, we uniformly select ng × ng
strands as the representative guide hairs (the dots in Fig-
ure 3), whose state tensor g with a size of [ng, ng, nw, nc]
are updated by a physics-based simulator at runtime. In this
paper, we set ng = 16 for all the experiments.

Note that the hair states involved in the neural network
computations below are in the head’s local space. We obtain
the hair states in the world space by multiplying the local
states with the rigid transformation of the head.

4.2 Neural Interpolator

By leveraging the tensor-based representation of hair states,
we present a neural hair state interpolator by taking advan-
tage of recent progress in machine learning research.

Guide hairs for interpolation

Normal hair to generate

Other guide hairs

Fig. 3: Guide Hair Interpolation. The uniform sampling of
the guide hairs in the uv plane. A normal hair particle is
interpolated from its nearby 16 guide hair particles.

1. We haven’t observed remarkable promotion by adding three extra
channels for the particle velocity, which is similarly mentioned in [33].

L1282l
3

642l
16

3
162l

162l
32

322l
64 642l

32 1282l
16

1282l
3

322l
32

162l
64

C

Weights predictor Convolutional layer
Normal hair rest shape Trans-Convolutional layer
Guide hair position Input layer

Channels of feature map3 Add layer
Size of feature map (l=25)1282l Interpolate layerL
Rest shape feature Concatenate layerC

Fig. 4: Neural Interpolator Architecture. The neural inter-
polator receives the rest shape and the current guide hair
positions, to generate the interpolation weights. A sequence
of convolutions and transposed convolutions are skip con-
nected like the U-net [41] architecture. The high-resolution
normal hairs are interpolated from the guide hairs in their
vicinity using the predicted weights.

4.2.1 Architecture

The neural interpolator consists of two components, i.e., the
weights predictor Wθ with trainable parameters θ and the
linear interpolator L (Figure 1). The weight predictor takes
the rest state s̄ and the guide hair states g updated in current
timestep as input, and produces the interpolation weights.
Then the states of the guide hairs are linearly interpolated
with these predicted weights to update the states s of the
normal hairs:

s = L(g, ω), (2)

where ω = Wθ(s̄,g) is the weight tensor with a size of
[nu, nv, nw, nn]. During the interpolation, for each normal
hair strand, we take only nn guide hairs in its closest
square neighborhood into consideration (the red dots in
Figure 3). That means, for each particle p on a normal hair
strand, Wθ produces a weight vector ωp of length nn for its
interpolation. We use nn = 16 in all our experiments. Then
the state sp of this particle is updated as:

sp =
∑
q∈Gp

gq · ωpq. (3)

Here Gp = adj(p) denotes the index set of guide hair parti-
cles in the neighborhood of p, and thus we have |Gp| = nn.
For any boundary hair p with its neighborhood not fully
covered by the uv map, we simply pad Gp with the nearest
valid guide hairs to ensure proper interpolation.

The weights predictor network Wθ is composed of a set
of convolution and transposed convolution layers correlated
by skip connections (see Figure 4). Specifically, we generate
a pyramid of rest shape features by a sequence of convolu-
tions, and concatenate the coarsest one s̄∗ with the features

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 5

extracted from current guide hairs. The concatenated fea-
tures then walks through a sequence of transposed convo-
lutions to get back to the original resolution. LeakyReLU
is used as the activation function for the hidden layers,
together with instance normalization. A softmax is applied
at the end of the network to normalize the interpolation
weights to satisfy the convex constraints, i.e. ωpq ≥ 0 and∑

q ωpq = 1. This architecture is fully-convolutional, which
ensures that the features are locally extracted from adjacent
hair strands by a series of spatially sharable kernels. Relied
on this locality, we can apply the trained network to various
hairstyles with distinct spatial arrangements.

4.2.2 Loss Function

During the offline training phase, we compute the convolu-
tional network parameters θ by minimizing a loss function
dedicated to hair simulation:

L(θ) = 0.01Ldata + 1Llen + 0.1Lsnap + 0.1Ltempo, (4)

where the loss function L is composed of four loss terms,
i.e., the primary data regression term Ldata, the hair strand
length-preservation term Llen, the guide hair mode snap-
ping term Lsnap, and the temporal coherence term Ltempo.
We empirically choose the weights given in Equation 4 to
balance the non-homogeneous scales of these terms.

For each frame, we penalize the L1 norm of the deviation
between the ground-truth states ŝ and the normal hair states
s generated by the neural interpolator (Equation 2), which
ensures a sufficiently close data reconstruction:

Ldata = ‖ŝ− s‖1 . (5)

Since a hair strand is physically easy to bend but almost
non-stretchable, we penalize the length variation of every
normal hair segment with respect to the rest state:

Llen =
∑

a,b∈segments

(‖sa − sb‖2 − ‖s̄a − s̄b‖2)
2
, (6)

where a and b are the start and the end points of a hair
segment. Though Ldata implicitly encodes the inextensibil-
ity condition, we explicitly factorize the violation of length
from the data term to better control the regularization.

g3

c c

g3

g1 g2

123 123

g1 g2

Fig. 5: Snapping to One Guide Hair Mode. Naive interpo-
lation weights lead to interpenetration artifacts (left). Mean-
ingful weights produced by our method generate reasonable
interpolation results (right).

Crop region for data augmentation

Fig. 6: Data Augmentation. Two valid crops (yellow) aug-
menting the training data. We totally generate 64 valid crops
per-frame.

The guide hair states keep changing during the motion.
For each normal hair strand, the adjacent guide hairs re-
sponsible for its interpolation may converge together or
spread out according to their mutual interactions. When
this subset of guide hairs has several completely differ-
ent modes, naive interpolation among these quasi-discrete
modes is meaningless, which quickly leads to physically
incorrect results such as interpenetration (left of Figure 5).
Considering such facts, we intentionally snap the normal
hair to one particular mode of its adjacent guide hairs by
penalizing the vanishing sum of the centrifugal directions:

Lsnap = −
∑
p

∥∥∥∥∥∥sp − 1

|Gp|
∑
q∈Gp

gq

∥∥∥∥∥∥
2

, (7)

which vanishes, i.e., the distinct modes cancel out each
other, when the predicted weights interpolate the guide
hairs in an almost uniform way (that we want to avoid).
Incorporating the loss term, the trained network produces
reasonable weights that interpolate guide hairs mainly from
one particular mode (right of Figure 5).

The loss terms we have introduced so far are imposed at
each frame independently. Flickering artifacts would appear
due to the possible violation of the temporal coherence (see
the video and Figure 13). Therefore, we incorporate a loss
term to penalize the inconsistencies in the temporal space:

Ltempo =
∑
t

∥∥∥(s(t+1) − s(t)
)
−
(
ŝ(t+1) − ŝ(t)

)∥∥∥
1
, (8)

where we use the forward difference formula to compute
the predicted and ground-truth velocity at frame t.

4.2.3 Data Augmentation
Inherently, the neural interpolator captures the knowledge
of mutual relationships among guide hairs and uses that to
predict the corresponding normal hairs. Therefore, extract-
ing only a single set of guide hairs for each hair frame is
inefficient for the training. Instead of using a fixed pattern
for selecting guide hairs, we further augment the training
data by sliding a crop window in the uv plane (see Fig-
ure 6). Specifically, we make every slot of the 8× 8 (for 128
resolution) upper-left region in the uv plane as the corner of
a valid crop, which gives us 64 crops per-frame. We regard
each crop as a ground-truth data ŝ, and again we select one

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 6

Fig. 7: Displacement Generator Comparison. Compared
with the ground-truth data (right), the hair details produced
by using the fine-scale generator (middle) is visually more
realistic than that of without using it (left).

for every eight strands in u and v directions as the guide
hairs g. In this way, every hair strand in the frame gets a
chance to play the role of a guide hair, which significantly
enriches the mutual relationships among the hairs in the
training data.

4.3 Fine-Scale Displacement
The neural interpolator described above produces pleasing
results for hairs with moderate resolution. However, when
the resolution of the normal hairs goes up to 128 × 128,
the hair details gradually deteriorate since we keep using
the 16 × 16 guide hairs. In such a case, the supporting
region of each guide hair strand expands larger, which
inevitably leads to a smoother interpolation of the normal
hairs (see Figure 7). Therefore, we introduce a fine-scale
displacement generator to strengthen the realistic details
of the neural interpolator’s output. Visually, this generator
produces a considerable amount of hair details only when
the resolution is higher than 128 × 128, according to our
observation (See the supplemental for more comparisons).

4.3.1 Generator
The generator Fβ generates a fine-scale displacement:

∆s = Fβ(s̄∗,g), (9)

which is added to the neural predictor’s output to obtain
more realistic hair details s̃ = s + ∆s. Thanks to the
efficacy and stability of our neural interpolator introduced
above, the generator Fβ is made lightweight and consists of
only one convolution and two transposed convolutions (see
Figure 8), which are sufficient to produce the level of hair
details that we need.

Data flow direction
Fully-connected
Frozen network

Ground truthGT

1282l
5

Feature
Extractor

642l/2
32

322l/4
64

162l/8
128

162l/8
256

1
1

Discriminator

162l
32

162l
4

1282l
3

642l
16

Fine-scale Displacement

162l
3

1282l
3

1282l
3 GT

Neural
Interpolator

C

162l
64

162l
1

�

Fig. 8: Displacement Generator Architecture. The sec-
ondary generator takes as input the current guide hair states
g, and the semantic features s̄∗ (extracted from the rest
shape). It produces the fine-scale displacement and adds
that onto the neural interpolator’s output. The result is put
into the discriminator for adversarial training.

Fig. 9: Exemplars of training hairstyles. Our training data
includes multiple hairstyles with different length and curli-
ness.

4.3.2 Discriminator
The adversarial training of the fine-scale displacement gen-
erator fails to produce realistic hair details if we directly use
the 3D Euclidean coordinates as the input to the discrimina-
tor. Instead, we first push the 3D coordinates into a prede-
fined feature descriptor E and then feed its output into the
discriminator Dγ for classification. The feature descriptor
have five channels per each hair particle, of which the first
four channels are the distances to its four closest guide hair
particles, and the last channel is the geodesic distance to the
root particle on the strand. Empirically, we find the explicit
use of such features not only helps capture the semantic
details of representative hairstyles but also stabilizes the
GAN training. The discriminator is composed of a series of
convolutions and a fully-connected layer (see Figure 8). We
adversarially train the generator Fβ to discriminate between
the generated results and the ground-truth:

min
β

max
γ

(logDγ(E(ŝ)) + log(1− Dγ(E(s̃)))) , (10)

by alternating the gradient descent update of the network
parameters β and γ. In practice, we randomly select a frame
data pair (ŝ, s̃) during each iteration, and update β once and
γ twice accordingly in the style of Wasserstein GAN [42].

5 EXPERIMENTAL RESULTS

5.1 Hardware and Software
We train our neural interpolator and fine-scale displacement
generator on a workstation with four NVIDIA GTX 1080Ti
GPUs. For physics-based simulation and online network
inference, we use a desktop PC with an Intel Core i7-4790
CPU and an NVIDIA GTX 1080 GPU. We implement the
neural network modules in Keras [43] with TensorFlow
backend [44] and the online mass-spring based hair simu-
lation system in C++ with parallel computing module.

5.2 Data Generation and Training
We use ten different hairstyles to prepare the training data,
in which five are straight hairs, and five are curly hairs, all
with different lengths (see the exemplars in Figure 9). We

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 7

Fig. 10: Our method generates visually realistic animations for a wide variety of hairstyles in an interactive speed.

drive the physics-based simulation of each hairstyle by an
underlying head motion sequence consists of 12, 000 frames.
The sequence is precomputed by randomly sampling sev-
eral key poses and SLERPing the in-between frames with a
smoothing constraint of the speed. We produce the test data
by running the same physics-based simulator as used for
training under the same sets of parameters. The hairstyles
and head motions have no intersections with the training
data. The hairstyles vary in length, curliness, growth direc-
tion, and parting style, which are either collected from a
public hair dataset 2 or procedurally generated by ourselves.

For the neural network training, we employ the ADAM
optimizer [45] with a learning rate of 0.001 and a batch size
of 4. We terminate the training process after four epochs for
the neural interpolator and one epoch for the fine-scale dis-
placement generator, respectively. See Appendix B and the
supplemental for more details about data and architecture.

5.3 Generalization

Based on the hair parameterization and the network design
presented in Section 4, we succeed in training a unified yet
expressive neural interpolator on representative hairstyles.
Figure 10 shows typical hair simulations generated by the
resultant neural interpolator. Though the test hairstyles
and head motions are distinct from the training data, the

2. http://www.cemyuksel.com/research/hairmodels

simulations preserve sufficient fidelity and are perceptively
indistinguishable from the ground-truth. Table 1 shows a list
of quantitative comparisons. Rather than directly computing
any similarity metrics on 3D hair, we adopt the PSNR index
to compare the rendered hair images to approximate human
perception.

Hairstyles are innumerable, and the 3D hairs data made
public is limited. Therefore, it’s neither practical nor neces-
sary to achieve generalization by training a vast network.
Fortunately, like the natural images, hairs also possess spa-
tially invariant local features. Hence a good generalization
ability heavily relies on the network’s local adaptivity. Our
neural interpolator is fully-convolutional by design and is

TABLE 1: Quantitative Comparison. We execute the com-
parisons on a single hairstyle to show the superiority of our
method.

Method PSNR

Our method

Ldata only 28.92
w/o Llen 28.04
w/o Lsnap 28.97
w/o fine-scale displacement Fβ 29.29
Our full method 29.56

Chai et al’s method [10] 29.13

TempoGAN [33]
3D positions 26.24
Euler rotation vectors 26.20

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 8

wA -> A wA -> BwB -> A wB -> BHairStyle A HairStyle B

mirror hair

u

v
mirror hair

u

v

Fig. 11: Generalization. Our method produces reasonable weights according to different hairstyles that vary in factors like
distributions (top row), growth directions (middle row), and parting styles (bottom row). Swapping the weights of hairstyle
A (leftmost column) and hairstyle B (rightmost column) for interpolation leads to severe artifacts (the two columns in the
middle). This observation proves the adaptability of our neural interpolator.

(a) (b) (c) (d) (e)

Fig. 12: Ablation Study. (a) Ldata only. (b) Without the modal snapping term Lsnap. (c) Without the non-stretchable term
Llen. (d) Our full loss function. (e) The ground-truth.

capable of synthesizing according to the local features.

We conduct a hairstyle mirror test to verify the necessity
and efficacy of the local adaptivity (Figure 11 top). Precisely,
we mirror a hairstyle A about the plane of symmetry to gen-
erate another hairstyle B. Our neural interpolator predicts
reasonable weights and produces realistic hairs on A and
B, respectively. However, directly applying the predicted
weights to the mirrored hairstyle, i.e., ωA to B and ωB to
A, lead to degraded results with severe artifacts, which
justifies the necessity of the local adaptivity. Our neural
interpolator naturally generalizes to free swaps and mirrors
of subregions, i.e., the change of distribution. We leverage
on this superiority to realize the hairstyle editing tool in
Section 5.9.

Figure 11 (middle and bottom rows) shows the gener-
alization abilities on hairstyles under the change of growth
direction and parting style, respectively. Again, our neural
interpolator is capable of producing realistic results on all
the hairstyles, ranging from wavy to backcombed and from

middle-parting to side-parting. The artifacts appear when
we directly transfer the weights predicted on one hairstyle
to another for interpolation, which demonstrates that the
neural interpolator is capable of adapting the weights pre-
diction process to the local features extracted from the rest
shape and guide hairs. See the supplemental for more tests
under curliness and length variations.

5.4 Ablation Study
Figure 12 shows the inference results of the neural interpola-
tor trained with different loss terms discarded. A simple L1
loss leads to over-smoothing hairs that lack salient details
like the clusters of strands. Meanwhile, intersections appear
between the hairs and the head. The modal snapping term
Lsnap is vital to break the symmetry, i.e., encouraging the
normal hairs to follow a specific cluster of guide hairs.
Without it, intersection artifacts quickly emerge due to an
unbiased interpolation. According to our observation, this
loss term also strengthens the clustering effect and brings in

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 9

more hair details. The hair strands are inherently stretch-
resistant in the real world. Without the loss term Llen,
zigzag artifacts, i.e., visible changes of segment lengths,
would appear due to the conflict between the data term
and the snap term. On the contrary, our complete loss
function (Equation 4) generates satisfactory details without
introducing any noticeable artifacts.

The temporal constraint is the key to preventing a sud-
den change of the velocity field during simulation, which
leads to flickering artifacts of hair strands (see the video).
Figure 13 shows that many discontinuous points would
emerge if we exclude Ltempo from the loss function.

The data augmentation strategy remarkably increases
the generalization capability because of the promoted lo-
cal adaptivity, obtained from the enriched information of
mutual relationships. Figure 14 shows the appearance of
intersection artifacts when we train the network without us-
ing the data augmentation. The complex mutual interactions
between adjacent hair strands make a single set of guide hair
samplings inadequate to capture all the information.

5.5 Comparison to Skinning with Static Weights

Traditional skinning methods precompute a fixed set of
weights and apply them to blend the transformations at
handles. Therefore, the weights are static to the data. In
contrast, our neural interpolator has a weight predictor
component that generates weights according to the input
data, i.e., they are dynamic to the guide hairs at each frame.

Here we compare our neural interpolator with two dif-
ferent hair skinning methods using static weights. The first
method formulates the computation of the static weights
as a quadratic programming problem, which directly min-
imizes the L2 loss between s and ŝ subject to the non-
negativity and partition-of-unity constraints of ω. Rather

Fig. 13: Velocity Field in a uv Plane. (left) The ground truth.
(middle) Using the temporal loss term. (right) Without the
temporal loss term. Note the clumped discontinuities.

Fig. 14: Data Augmentation Comparison. (left) Complex
mutual interactions and arrangements between hair strands.
(middle) Without data augmentation. (right) With data aug-
mentation.

than training a network to predict the weights, here, the
weights ω themselves are the globally optimized variables
(independent of per-frame guide hairs). The second one
is the state-of-the-art hair skinning method [10], which
builds a graph structure of all hair particles and designs
partitioning and clustering algorithms to jointly compute
both the guide hairs and the interpolation weights that best
fit the simulation data. In experiments, the two methods
using static weights tend to generate over-smoothing results
that lack hair details like the strand aggregations and salient
curvatures (Figure 15). Moreover, the 3D positions of their
output have a lower distance to the ground-truth compared
with our neural interpolator, which reflects the fact that the
MAE alone is not a clear indicator for human perception of
hair similarity.

To further demonstrate the necessity of dynamic skin-
ning weights, we show the hair states at two moments of the
ground-truth simulation in Figure 16 (left). At the moment
t1, the normal hair strand goes along with the guide hair
g1; but at the moment t2, it is bumped into the cluster of
another guide hair g2 due to a violent collision between the
hair strands and the head. A static set of weights cannot
express this changing effect during the simulation process.
In contrast, Figure 16 (right) shows the dynamic weights
predicted by our neural interpolator for this sequence. The
weights intuitively adapt with the guide hair states to follow
the ground-truth data.

The above comparison is executed on a single hairstyle.
To fully demonstrate the merit of our CNN-based dynamic
skinning, we also compare with the state-of-the-art method

Fig. 15: Comparison to Skinning Methods with Static
Weights. Compared with the straightforward quadratic pro-
gramming method (leftmost) and the cutting-edge data-
driven method [10] (middle left), our dynamic weights
prediction and interpolation produce much more realistic
hair details (middle right), and the result is visually much
similar to the ground-truth (rightmost).

Frame 1 Frame 2Frame 1 Frame 2

Fig. 16: Dynamic Weights of a Hair Strand. (left) The hair
states at two moments. During the process, the white normal
hair strand leaves the red guide strand and embraces the
orange one. The gray guide hair strands contribute very
little to the interpolation. (right) Dynamic weights of three
particles in the white normal hair strand.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 10

[10] on multiple hairstyles, as shown in Figure 17. Specif-
ically, we use a training set of two hairstyles and test on
another unseen hairstyle. The model presented by Chai et
al. [10] fails to recover all the training data and produces ar-
tifacts on the test data. The strategy of static weights restricts
the representation ability of the model. Thus the fitting qual-
ity deteriorates quickly when more distinct hairstyles are
involved in the training process. In contrast, our model fits
all the training hairstyles more accurately and generalizes
well to the test hairstyle.

5.6 Comparison to Other Architectures
Previous works have presented end-to-end methods work-
ing well for physics-based simulation, e.g., tempoGAN [33]
for the smoke. Considering this fact, we execute two experi-
ments that apply the tempoGAN architecture to regress the
hair positions and deformations respectively and compare
them with our neural interpolator. We represent the hair
position by the Euclidean coordinates of the particles and
represent the deformation by the concise rotation vectors
(multiplying the angle with a unit vector of the axis) of each
hair segment. Figure 18 shows the output results of these
two end-to-end methods as well as the neural interpolator.
Compared with them, our approach not only exhibits a
higher capability in capturing realistic details but also saves
lots of computations. There is a critical difference between
our problem and the smoke simulation. The hair data is
strongly anisotropic due to its strand structure, but the

Fig. 17: Comparison to the State-Of-The-Art on Multiple
Hairstyles. From left to right: Chai et al. [10], our method,
and the ground-truth. Results of [10] have artifacts on both
training data (top row) and test data (bottom row).

Fig. 18: Comparison with Alternative Architectures. Com-
pared with the tempoGAN-like networks directly produc-
ing the 3D positions (leftmost) and the Euler rotation vectors
(middle left), our neural interpolator robustly produces per-
ceptually realistic hairs (middle right) that are much more
faithful to the ground truth (rightmost).

smoke data is inherently isotropic. This difference partially
explains why tempoGAN architecture cannot work well on
hair data. In contrast, our predict-and-interpolate strategy
obeys the structural anisotropy of the hair data by design.
Moreover, the interpolation strategy effectively regularizes
the output space, which makes our neural network much
easier to converge and much more stable to generalize.

5.7 Locality Assumption and Non-Local Interactions
Our method relies on the locality in the uv plane for strand
interpolation and hairstyle generalization. In the real world,
the interactions between hair strands can be non-local, es-
pecially for long hairstyles. Though our CNN-based neural
interpolator merely uses a moderate receptive field, hair
strands far away in the uv plane (outside of each other’s
receptive field) can still interact in the final results. The
reason is mainly due to the presence of the guide hairs.
Once an interaction happens between remote hair strands
in the full simulation data, it is very likely that their nearby
guide hairs also interact (see Figure 19b). In such cases,
the physics-based simulation of the guide hairs at runtime
preserves those remote interactions and further transfers
them to the normal hair interpolations. According to our
statistics, the non-local interactions occupy less than 30% of
all the hair interactions. Our method succeeds in preserving
about half of the non-local interactions in the full simulation
data (see Figure 19a). We believe that despite its simplifying
assumption, our system produces practically-promising re-
sults that preserve the main hair interactions without losing
much dynamic detail. Furthermore, our method achieves
this level of detail within a limited time budget, which is
essential for most real-time and interactive applications.

5.8 Performance
By leveraging the carefully designed network architecture
and the GPU computation, our CNN-integrated simulation
framework offers an interactive speed on hairstyles of up

b) Guide Hair Interactions

c) Remote Interaction Exemplars

GT

GT

a) Percentages of Remote Interactions

Fig. 19: Non-local hair Interactions. a) Percentages of re-
mote hair interactions in ground-truth and our results. For
each hair particle, we count its closest 50 particles in the
Euclidean configuration space for interactions. Two strands
outside of each other’s 32 × 32 local region in the uv space
are regarded as remote. b) The interaction amount between
the guide hairs in the neighborhood of two remote inter-
acting normal strands. c) Exemplars of remote interactions
between two normal strands during the inference phase.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 11

TABLE 2: Per-frame Runtime Statistics

Method
Time in seconds (FPS)

128× 128 256× 256

Our

Guide Hair Simulation 0.0084
Neural Interpolator 0.024 0.12
Fine-scale Displacement 0.0028 0.0056
Data Transmission 0.0068 0.026
Total 0.042 (23.7) 0.16 (6.4)

Full Hair Simulation 0.58 (1.7) 2.5 (0.4)

to 256 × 256 resolution, i.e., more than 60K strands. Table
2 shows the statistics of decomposed and total runtime.
Among all the online computations, the neural interpolator
is the main bottleneck (≈ 65% of the total time), and the data
transmission between GPU and main memory takes more
time than the fine-scale displacement generator. Compared
with the full simulation, our method produces visually
similar hair details while obtaining about 14 and 16 times of
speedup on resolution 128×128 and 256×256, respectively.

5.9 Application
To demonstrate the usage, we build a performance-driven
digital avatar system by integrating our interactive hair sim-
ulation method with a video-based facial tracking module
[46]. Figure 20 shows a real human actor driving the digital
avatar, whose hair simulation is controlled by the rigid head
transformation tracked in real-time. Please see the video for
a live demo.

Besides that, we also build a hairstyle editing tool to il-
lustrate the potential of our simulation method in interactive
applications. With this tool, an average user can interac-
tively change the length, curliness, growth direction, and
parting style of the hairs, and even composite a novel one
by copy-and-paste from multiple hairstyles. Our simulator
provides the user with immediate feedback on the dynamic
behavior after the hair editing. Please see Figure 21 and the
video for more details.

6 CONCLUSION, LIMITATION AND FUTURE WORK

We have introduced a CNN integrated framework for simu-
lating multiple hairstyles. It yields high-fidelity hair details

Fig. 20: Performance-driven digital avatar. We drive the
hair simulation by the average user’s head motions tracked
in real-time.

Fig. 21: Online hairstyle editing. The user can interactively
adjust the hairstyle in a control panel and see the prompt
feedback of its new dynamic behavior.

in an interactive speed. By pre-training on representative
hairstyles, our neural interpolator and fine-scale displace-
ment generator robustly generalize to novel hairstyles and
poses. We thus hope our approach further advances the
deployment of hair simulation into interactive AR and VR
applications.

Our method also has several limitations. We uniformly
sample a fixed number of particles along each hair strand
and execute the interpolation in every uv-plane of the grid.
This interpolation strategy relies on the assumption that
nearby hair strands have similar lengths. Otherwise, the
adjacent particles in the same uv-plane could be far apart in
the 3D space, which makes their interpolation meaningless.
In most practice, this assumption is reasonable, but a better
particle sampling/interpolation strategy should enter when
it is not the case.

Our loss function requires an explicit regularization for
length preservation. It is possible to entirely remove this
term by choosing another interpolation space. Currently,
we interpolate the vertex coordinates for its simplicity and
generality, but the whole method is not restricted to this rep-
resentation. For example, the curvature-twist representation
for super-helices [19] builds the inextensibility constraint
into the inherent formulation. Interpolation in this curvature
space is an exciting direction to explore, while the neural
interpolator may need dedicated controls to suppress the
potential artifacts brought by such interpolations.

It could be beneficial to make the dynamics update two-
way, i.e., transferring information from the high-res output
of the network back to the low-res guide hairs simulation, at
each timestep to increase its fidelity. For example, physical
interactions like the collision forces could be estimated and
transferred, at the cost of extra online computations.

Our discriminator for fine-scale displacement generator
uses manually designed features as the input and classify
the real/fake data in a 3D sense. Ideally, it makes more sense
to judge from the 2D image directly whether a hair model is
perceptively similar to the ground-truth or not. An efficient
differentiable renderer dedicated to hairs is thus required
for back-propagating the gradient information.

So far, we could not achieve the interactive performance
on extremely high-resolution hairstyles, e.g., 512 × 512. We
could obtain a more lightweight network by using the smart
weight and unit pruning methods to accelerate the inference
speed.

We generate the full simulation data by using the same

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 12

physical parameters for the same hairstyles. The variance
of data would significantly increase when we use different
parameters. Training a representation network competent
for this data, e.g., by conditioning on the additional input of
physical parameters, deserves further exploration.

Last but not least, how to extend our method to take into
account more complex mechanics such as the advanced fric-
tional contacts [47] and liquid-hair interactions [5] should be
an exciting research direction.

APPENDIX A
SCALP PARAMETERIZATION

According to the work [48], the scalp surface is considered
as the upper half of a sphere approximately. Then the scalp
surface parameterization is defined as

u = arccos
x̂√

x̂2 + (ŷ + 1)2

v = arccos
ẑ√

ẑ2 + (ŷ + 1)2
,

where (x̂, ŷ, ẑ) = p−o
‖p−o‖ is the projection of a scalp point p

onto the unit sphere centered at o, whose south pole point
is at (0,−1, 0) in the local system. Note that we discard the
parameter w defined in [48].

APPENDIX B
DETAILS OF DATA

Here we summarize the details of the hair data used in this
paper. We use ten different hairstyles for training. Besides
these hairstyles, we add another nine different hairstyles for
testing the learned model. The head motions for training
and testing are mutually exclusive.

Train Test

#Hairstyles

Curly 5 5+1
Straight 5 5+1
Wavy - 1
wCurly - 1
Straight to Curly - 1
Half Curliness - 1
Random Growth Directions - 2
Side Part - 1

#Frames of
Head Motion

Random 12000 1500
Manually Specified - 460

#DataFrames in Total 120000 37240

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their constructive comments. This research is partially
supported by National Natural Science Foundation of China
(61772024, 61732016, 61890954).

REFERENCES

[1] S. Saito, L. Hu, C. Ma, H. Ibayashi, L. Luo, and H. Li, “3d
hair synthesis using volumetric variational autoencoders,” ACM
Transactions on Graphics (TOG), vol. 37, no. 6, p. 208, 2019.

[2] M. Zhang and Y. Zheng, “Hair-gan: Recovering 3d hair structure
from a single image using generative adversarial networks,” Visual
Informatics, 2019.

[3] G. Daviet, F. Bertails-Descoubes, and L. Boissieux, “A hybrid
iterative solver for robustly capturing coulomb friction in hair
dynamics,” in ACM Transactions on Graphics (TOG), vol. 30, no. 6.
ACM, 2011, p. 139.

[4] D. M. Kaufman, R. Tamstorf, B. Smith, J.-M. Aubry, and E. Grin-
spun, “Adaptive nonlinearity for collisions in complex rod assem-
blies,” ACM Transactions on Graphics (TOG), vol. 33, no. 4, p. 123,
2014.

[5] Y. R. Fei, H. T. Maia, C. Batty, C. Zheng, and E. Grinspun, “A
multi-scale model for simulating liquid-hair interactions,” ACM
Transactions on Graphics (TOG), vol. 36, no. 4, p. 56, 2017.

[6] E. Plante, M.-P. Cani, and P. Poulin, “A layered wisp model for
simulating interactions inside long hair,” in Computer Animation
and Simulation 2001. Springer, 2001, pp. 139–148.

[7] J. T. Chang, J. Jin, and Y. Yu, “A practical model for hair
mutual interactions,” in Proceedings of the 2002 ACM SIG-
GRAPH/Eurographics symposium on Computer animation. ACM,
2002, pp. 73–80.

[8] S. Hadap and N. Magnenat-Thalmann, “Modeling dynamic hair
as a continuum,” in Computer Graphics Forum, vol. 20, no. 3. Wiley
Online Library, 2001, pp. 329–338.

[9] Y. Bando, B.-Y. Chen, and T. Nishita, “Animating hair with loosely
connected particles,” in Computer Graphics Forum, vol. 22, no. 3.
Wiley Online Library, 2003, pp. 411–418.

[10] M. Chai, C. Zheng, and K. Zhou, “A reduced model for interactive
hairs,” ACM Transactions on Graphics (TOG), vol. 33, no. 4, p. 124,
2014.

[11] ——, “Adaptive skinning for interactive hair-solid simulation,”
IEEE transactions on visualization and computer graphics, vol. 23,
no. 7, pp. 1725–1738, 2016.

[12] K. Ward, F. Bertails, T.-Y. Kim, S. R. Marschner, M.-P. Cani, and
M. C. Lin, “A survey on hair modeling: Styling, simulation, and
rendering,” IEEE transactions on visualization and computer graphics,
vol. 13, no. 2, pp. 213–234, 2007.

[13] F. Bertails, S. Hadap, M.-P. Cani, M. Lin, T.-Y. Kim, S. Marschner,
K. Ward, and Z. Kačić-Alesić, “Realistic hair simulation: animation
and rendering,” in ACM SIGGRAPH 2008 classes. ACM, 2008,
p. 89.

[14] R. E. Rosenblum, W. E. Carlson, and E. Tripp III, “Simulating the
structure and dynamics of human hair: modelling, rendering and
animation,” The Journal of Visualization and Computer Animation,
vol. 2, no. 4, pp. 141–148, 1991.

[15] B. Choe, M. G. Choi, and H.-S. Ko, “Simulating complex hair
with robust collision handling,” in Proceedings of the 2005 ACM
SIGGRAPH/Eurographics symposium on Computer animation. ACM,
2005, pp. 153–160.

[16] A. Selle, M. Lentine, and R. Fedkiw, “A mass spring model for hair
simulation,” ACM Transactions on Graphics (TOG), vol. 27, no. 3,
p. 64, 2008.

[17] K.-i. Anjyo, Y. Usami, and T. Kurihara, “A simple method for
extracting the natural beauty of hair,” ACM SIGGRAPH Computer
Graphics, vol. 26, no. 2, pp. 111–120, 1992.

[18] A. Daldegan, N. M. Thalmann, T. Kurihara, and D. Thalmann, “An
integrated system for modeling, animating and rendering hair,” in
Computer Graphics Forum, vol. 12, no. 3. Wiley Online Library,
1993, pp. 211–221.

[19] F. Bertails, B. Audoly, M.-P. Cani, B. Querleux, F. Leroy, and J.-
L. Lévêque, “Super-helices for predicting the dynamics of natural
hair,” in ACM Transactions on Graphics (TOG), vol. 25, no. 3. ACM,
2006, pp. 1180–1187.

[20] M. Bergou, M. Wardetzky, S. Robinson, B. Audoly, and E. Grin-
spun, “Discrete elastic rods,” in ACM transactions on graphics
(TOG), vol. 27, no. 3. ACM, 2008, p. 63.

[21] A. McAdams, A. Selle, K. Ward, E. Sifakis, and J. Teran, “Detail
preserving continuum simulation of straight hair,” in ACM Trans-
actions on Graphics (TOG), vol. 28, no. 3. ACM, 2009, p. 62.

[22] A. Derouet-Jourdan, F. Bertails-Descoubes, G. Daviet, and J. Thol-
lot, “Inverse dynamic hair modeling with frictional contact,” ACM
Transactions on Graphics (TOG), vol. 32, no. 6, p. 159, 2013.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 13

[23] L. Petrovic, M. Henne, and J. Anderson, “Volumetric methods for
simulation and rendering of hair,” Pixar Animation Studios, vol. 2,
no. 4, 2005.

[24] M. Müller, T.-Y. Kim, and N. Chentanez, “Fast simulation of
inextensible hair and fur.” VRIPHYS, vol. 12, pp. 39–44, 2012.

[25] C. Yuksel, S. Schaefer, and J. Keyser, “Hair meshes,” in ACM
Transactions on Graphics (TOG), vol. 28, no. 5. ACM, 2009, p.
166.

[26] K. Wu and C. Yuksel, “Real-time hair mesh simulation,” in Pro-
ceedings of the 20th ACM SIGGRAPH Symposium on Interactive 3D
Graphics and Games. ACM, 2016, pp. 59–64.

[27] K. Ward, M. C. Lin, L. Joohi, S. Fisher, and D. Macri, “Modeling
hair using level-of-detail representations,” in Proceedings 11th IEEE
International Workshop on Program Comprehension. IEEE, 2003, pp.
41–47.

[28] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol.
521, no. 7553, p. 436, 2015.

[29] S. W. Bailey, D. Otte, P. Dilorenzo, and J. F. O’Brien, “Fast and
deep deformation approximations,” ACM Transactions on Graphics
(TOG), vol. 37, no. 4, p. 119, 2018.

[30] L. Liu, Y. Zheng, D. Tang, Y. Yuan, C. Fan, and K. Zhou,
“Neuroskinning: automatic skin binding for production characters
with deep graph networks,” ACM Transactions on Graphics (TOG),
vol. 38, no. 4, p. 114, 2019.

[31] R. Luo, T. Shao, H. Wang, W. Xu, X. Chen, K. Zhou, and Y. Yang,
“Nnwarp: Neural network-based nonlinear deformation,” IEEE
transactions on visualization and computer graphics, 2018.

[32] L. Fulton, V. Modi, D. Duvenaud, D. I. Levin, and A. Jacob-
son, “Latent-space dynamics for reduced deformable simulation,”
vol. 38, no. 2, pp. 379–391, 2019.

[33] Y. Xie, E. Franz, M. Chu, and N. Thuerey, “tempogan: A tem-
porally coherent, volumetric gan for super-resolution fluid flow,”
ACM Transactions on Graphics (TOG), vol. 37, no. 4, p. 95, 2018.

[34] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham,
A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang et al., “Photo-
realistic single image super-resolution using a generative adver-
sarial network,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2017, pp. 4681–4690.

[35] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial
nets,” in Advances in neural information processing systems, 2014, pp.
2672–2680.

[36] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,”
arXiv preprint arXiv:1312.6114, 2013.

[37] M. Chai, T. Shao, H. Wu, Y. Weng, and K. Zhou, “Autohair: Fully
automatic hair modeling from a single image,” ACM Transactions
on Graphics, vol. 35, no. 4, 2016.

[38] Y. Zhou, L. Hu, J. Xing, W. Chen, H.-W. Kung, X. Tong, and
H. Li, “Hairnet: Single-view hair reconstruction using convolu-
tional neural networks,” in Proceedings of the European Conference
on Computer Vision (ECCV), 2018, pp. 235–251.

[39] S. Lombardi, T. Simon, J. Saragih, G. Schwartz, A. Lehrmann, and
Y. Sheikh, “Neural volumes: learning dynamic renderable vol-
umes from images,” ACM Transactions on Graphics (TOG), vol. 38,
no. 4, p. 65, 2019.

[40] K. Olszewski, D. Ceylan, J. Xing, J. Echevarria, Z. Chen, W. Chen,
and H. Li, “Intuitive, interactive beard and hair synthesis with
generative models,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2020, pp. 7446–7456.

[41] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional
networks for biomedical image segmentation,” in International
Conference on Medical image computing and computer-assisted inter-
vention. Springer, 2015, pp. 234–241.

[42] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative
adversarial networks,” in International conference on machine learn-
ing, 2017, pp. 214–223.

[43] F. Chollet et al., “Keras,” https://keras.io, 2015.
[44] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,

G. S. Corrado, A. Davis, J. Dean, M. Devin et al., “Tensorflow:
Large-scale machine learning on heterogeneous distributed sys-
tems,” arXiv preprint arXiv:1603.04467, 2016.

[45] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[46] C. Cao, Y. Weng, S. Lin, and K. Zhou, “3d shape regression for
real-time facial animation,” ACM Transactions on Graphics (TOG),
vol. 32, no. 4, p. 41, 2013.

[47] C. Jiang, T. Gast, and J. Teran, “Anisotropic elastoplasticity for
cloth, knit and hair frictional contact,” ACM Transactions on Graph-
ics (TOG), vol. 36, no. 4, p. 152, 2017.

[48] L. Wang, Y. Yu, K. Zhou, and B. Guo, “Example-based hair
geometry synthesis,” ACM Transactions on Graphics (TOG), vol. 28,
no. 3, p. 56, 2009.

Qing Lyu received the bachelor’s degree in Digi-
tal Media Technology from Zhejiang University in
2016. Currently, she is working toward the PhD
degree at the State Key Lab of CAD&CG, Zhe-
jiang University. Her research interests include
visual computing and computer graphics.

Menglei Chai is a Senior Research Scientist at
Snap Inc. He received his Ph.D. and B.Eng. in
Computer Science from Zhejiang University in
2017 & 2011. His research interest is Computer
Vision and Graphics, especially in photo manip-
ulation and physics-based simulation.

Xiang Chen is an Associate Professor in the
State Key Lab of CAD&CG, Zhejiang Univer-
sity. He received his Ph.D. in Computer Science
from Zhejiang University in 2012. His current
research interests mainly include fabrication-
aware design, physics-based simulation, image
analysis/editing, shape modeling/retrieval and
computer-aided design.

Kun Zhou is a Cheung Kong Professor in the
Computer Science Department of Zhejiang Uni-
versity and the Director of the State Key Lab of
CAD&CG. He received my BS degree and PhD
degree in computer science, both from Zhejiang
University. After graduation he spent six years
with Microsoft Research Asia, and was a lead
researcher of the graphics group before moving
back to Zhejiang University. He was named one
of the world’s top 35 young innovators by MIT
Technology Review in 2011, and was elected as

an IEEE Fellow in 2015.

