Interactive Sound Propagation with Bidirectional Path Tracing
Supplementary Material

1 Convergence of SNR optimization

In our propagation algorithm, we need to optimize the SNR metric
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where x,, is the sample probability for the integral T%Lo. Opti-
mization of this target function above could be written as
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with at least one positive @, for every m and n. This optimiza-
tion problem is strictly convex, which guarantees the existence and
uniqueness of the global minimum. To find the solution for this
problem, one could use the iterative method below:
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. In this section, we’ll prove that the algorithm above locally con-
verges to the global minimum for every a € (0, 1) and the conver-
gence is at least linear.

The construction of our iterative method starts from the method of
Lagrange multipliers [Bertsekas and Nedic 2003]. The correspon-
dent Lagrange function for (2) is
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and the solution x* satisfies the equation V.L(x*, \*) = 0 for some
certain \*. The equation could also be written as
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(8) is a set of nonlinear equations, which is hard to solve directly.
Therefore, we constructed a iterative method to obtain the approxi-
mation of the solution x™*. For an iteration method x,+1 = T(x»)
that solves (8), it’s necessary that T'(x) maps x*, the solution of
(8), to itself. And x* is called a “fixed point” of T'(x).

We have constructed a T'(x) which has a fixed point at x*:
A*x*

T(x") = T
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We could see from (5) that || T'(x™)|| = 1. Together with (7), we

have \* = M. Thus x* is a fixed point of operator T. With
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we have the equation (5). To further adjust the convergence of the
iteration method, we add a relaxation factor « to T'(x) and achieve
the iteration algorithm (4).

Now we need to prove the convergence of our algorithm. First we’ll
look at the Jacobian matrix of operator T at x*. We have
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And the Jacobian matrix of T at x* could be expressed as
DT(x") = A —1, (14)

where I is the identity matrix and
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Now we’ll prove that all the eigenvalues of A (x") are inside the
[0, 1] interval. First, we notice that

A =BC, (16)
where
B(x) = [ ] (I7)
amk
Zk 1oz Inxwm
aw;j
Cx) = | e (18)
MY, e
MxN

It is obvious that ||B||1 = 1. Further, we know from (13) that
[|C(x*)|]s = 1. Therefore we get ||A(x*)||1 < 1. Since the
spectral radius of a matrix is no greater than its norm, the upper
bound of the eigenvalue is proved.

Second, we could also write A as
A= %BTBA” - %\/X(\/K*BTB\/K“)\/K’1 (19)

where A(x) = diag(x). We see that M - A is similar to the matrix
\/X_IBTB\/K_I, which is a positive semidefinite matrix with



no negative eigenvalue. Thus all eigenvalues of A are non-negative
and the lower bound of the eigenvalue is proved.

Combining the conclusion above with (14), we know that all the
eigenvalues of D'T'(x") fall into the interval [—1, 0]. Now we’ll do
a first-order Taylor expansion of T at x™*:

T(x) =x"+ DT(x")(x —x") + E(x)(x — x") (20)
where E(x) is a matrix that satisfies
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Together with (4), we have
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with lim__, o+ d(z) = 0.

For any o € (0,1), we can always find an o that satisfies
max{|1 — 2al,|1 — a|} + §(z) < 1 for any z < e¢. Therefore
(4) linearly converges to x* for any initial x with ||x — x™|| < eo.
Notice that max{|1 — 2|, |1 — «|} reaches its minimum when
a = %, which gives us a good candidate (but not necessarily the
best choice) for « in practical applications.

2 Improving Variance Estimation with Tem-
poral Coherence

Our iteration algorithm requires an estimation of ¢2,,,. This esti-
mation must be reevaluated constantly to address the changes of
the sound environment. However, the variance estimation can be
inaccurate due to insufficient number of samples. Actually, given a
random variable X, we have
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where S? is the sample variance estimation with N samples and jz4
is the fourth central moment [Casella and Berger 2002].

We exploit the temporal coherence and combine the estimation of
the current frame with the results from the previous frames to im-
prove the estimation quality. From (23) we observe that o2[S?(X)]
is roughly inversely proportional to /N. To simplify our analysis, we
would use a approximated version of (23), 0°[S*(X)] = C/N in
our following discussion.

We tag every estimated variance S? with a quality indicator Q[S?].
which satisfies c
o?[8%] =
Q

[52]
One could see from the definition that an estimation with a larger
@ will have less variance. For a new estimation, Q[S?] equals to
the number of samples used for estimation. For the combination of
two estimations, we have the equation below.
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and therefore
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It’s not hard to see that Q[yS2 4 (1 — 7)SZ] reaches its maximum

at
7= QISTA1/(QISTA] + QISED) 27)
And its maximum value is Q[S2] + Q[SZ].

After we calculate a new estimation SZ from samples in current
frame, we will combine it with the estimation inherited from the
last frame S? ; and generate the estimation of the current frame
S2. However, we also need to address the changes of the sound en-
vironment, which requires us to lower the weight of S?_; as much
as possible. To balance between the quality and the responsiveness
to scene changes, we use a predefined quality standard Q*, and
evaluate S? with the following rules:

o if Q[SZ] > Q*, we’ll use SZ for S} directly;

o if Q[S3] + Q[S?_1] < Q*, the maximal value of Q[yS2 +
(1 — )S2] would still be smaller than Q*, and we’ll use the
optimal combination weight from (27);

e Otherwise, we would keep Q[vS?_ 1 + (1 — 7)S3] = Q* to
make the quality of the estimation stable. The combination
weight is achieved by solving this equation, whose solutions
are given below:

Qi—1+Qo
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When Q;—1 = Q" (which is very likely to happen in prac-
tice), the equatiion above could be further simplified to:
Q" £ Qo
== 29
v 0" + Qo (29)

Since we need to lower the weight of S2_;. we would choose
the smaller value for ~.
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