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1 Convergence of SNR optimization

In our propagation algorithm, we need to optimize the SNR metric
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where xn is the sample probability for the integral T iL0. Opti-
mization of this target function above could be written as
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with at least one positive amn for every m and n. This optimiza-
tion problem is strictly convex, which guarantees the existence and
uniqueness of the global minimum. To find the solution for this
problem, one could use the iterative method below:
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. In this section, we’ll prove that the algorithm above locally con-
verges to the global minimum for every α ∈ (0, 1) and the conver-
gence is at least linear.

The construction of our iterative method starts from the method of
Lagrange multipliers [Bertsekas and Nedic 2003]. The correspon-
dent Lagrange function for (2) is

L(x, λ) = f(x) + λ(

N∑
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xn − 1) (6)

and the solution x∗ satisfies the equation∇L(x∗, λ∗) = 0 for some
certain λ∗. The equation could also be written as
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(8) is a set of nonlinear equations, which is hard to solve directly.
Therefore, we constructed a iterative method to obtain the approxi-
mation of the solution x∗. For an iteration method xn+1 = T(xn)
that solves (8), it’s necessary that T(x) maps x∗, the solution of
(8), to itself. And x∗ is called a “fixed point” of T(x).

We have constructed a T(x) which has a fixed point at x∗:

T(x∗) =
λ∗x∗

M
. (9)

We could see from (5) that ||T(x∗)|| = 1. Together with (7), we
have λ∗ =M . Thus x∗ is a fixed point of operator T. With

Tn(x) = −
xn
M
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we have the equation (5). To further adjust the convergence of the
iteration method, we add a relaxation factor α to T(x) and achieve
the iteration algorithm (4).

Now we need to prove the convergence of our algorithm. First we’ll
look at the Jacobian matrix of operator T at x∗. We have
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We know from (7) that
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And the Jacobian matrix of T at x∗ could be expressed as

DT(x∗) = A− I, (14)

where I is the identity matrix and
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Now we’ll prove that all the eigenvalues of A(x∗) are inside the
[0, 1] interval. First, we notice that

A = BC, (16)

where
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It is obvious that ||B||1 = 1. Further, we know from (13) that
||C(x∗)||1 = 1. Therefore we get ||A(x∗)||1 ≤ 1. Since the
spectral radius of a matrix is no greater than its norm, the upper
bound of the eigenvalue is proved.

Second, we could also write A as
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where Λ(x) = diag(x). We see that M ·A is similar to the matrix√
Λ
−1

BTB
√

Λ
−1

, which is a positive semidefinite matrix with



no negative eigenvalue. Thus all eigenvalues of A are non-negative
and the lower bound of the eigenvalue is proved.

Combining the conclusion above with (14), we know that all the
eigenvalues of DT(x∗) fall into the interval [−1, 0]. Now we’ll do
a first-order Taylor expansion of T at x∗:

T(x) = x∗ +DT(x∗)(x− x∗) + E(x)(x− x∗) (20)

where E(x) is a matrix that satisfies

lim
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Together with (4), we have

||xi+1 − x∗||
||xi − x∗|| ≤ ||α(DT(x∗) + E(x)) + (1− α)I||

≤ max{|1− 2α|, |1− α|}+ δ(||x− x∗||)
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with limx→0+ δ(x) = 0.

For any α ∈ (0, 1), we can always find an ε0 that satisfies
max{|1 − 2α|, |1 − α|} + δ(x) < 1 for any x < ε0. Therefore
(4) linearly converges to x∗ for any initial x with ||x− x∗|| < ε0.
Notice that max{|1 − 2α|, |1 − α|} reaches its minimum when
α = 2

3
, which gives us a good candidate (but not necessarily the

best choice) for α in practical applications.

2 Improving Variance Estimation with Tem-
poral Coherence

Our iteration algorithm requires an estimation of σ2
mn. This esti-

mation must be reevaluated constantly to address the changes of
the sound environment. However, the variance estimation can be
inaccurate due to insufficient number of samples. Actually, given a
random variable X , we have

σ2[S2(X)] =
1

N
(µ4[X]− N − 3

N − 1
σ4[X]), (23)

where S2 is the sample variance estimation withN samples and µ4

is the fourth central moment [Casella and Berger 2002].

We exploit the temporal coherence and combine the estimation of
the current frame with the results from the previous frames to im-
prove the estimation quality. From (23) we observe that σ2[S2(X)]
is roughly inversely proportional toN . To simplify our analysis, we
would use a approximated version of (23), σ2[S2(X)] = C/N in
our following discussion.

We tag every estimated variance S2 with a quality indicator Q[S2].
which satisfies

σ2[S2] =
C

Q[S2]
(24)

One could see from the definition that an estimation with a larger
Q will have less variance. For a new estimation, Q[S2] equals to
the number of samples used for estimation. For the combination of
two estimations, we have the equation below.
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and therefore
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It’s not hard to see that Q[γS2
a + (1− γ)S2

b ] reaches its maximum
at
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After we calculate a new estimation S2
0 from samples in current

frame, we will combine it with the estimation inherited from the
last frame S2

i−1 and generate the estimation of the current frame
S2
i . However, we also need to address the changes of the sound en-

vironment, which requires us to lower the weight of S2
i−1 as much

as possible. To balance between the quality and the responsiveness
to scene changes, we use a predefined quality standard Q∗, and
evaluate S2

k with the following rules:

• if Q[S2
0 ] > Q∗, we’ll use S2

0 for S2
k directly;

• if Q[S2
0 ] + Q[S2

i−1] < Q∗, the maximal value of Q[γS2
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b ] would still be smaller than Q∗, and we’ll use the

optimal combination weight from (27);

• Otherwise, we would keep Q[γS2
i−1 + (1 − γ)S2

0 ] = Q∗ to
make the quality of the estimation stable. The combination
weight is achieved by solving this equation, whose solutions
are given below:
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When Qi−1 = Q∗ (which is very likely to happen in prac-
tice), the equatiion above could be further simplified to:

γ =
Q∗ ±Q0

Q∗ +Q0
(29)

Since we need to lower the weight of S2
i−1. we would choose

the smaller value for γ.
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