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Abstract

We introduce Bidirectional Sound Transport (BST), a new algo-
rithm that simulates sound propagation by bidirectional path trac-
ing using multiple importance sampling. Our approach can handle
multiple sources in large virtual environments with complex occlu-
sion, and can produce plausible acoustic effects at an interactive rate
on a desktop PC. We introduce a new metric based on the signal-
to-noise ratio (SNR) of the energy response and use this metric to
evaluate the performance of ray-tracing-based acoustic simulation
methods. Our formulation exploits temporal coherence in terms
of using the resulting sample distribution of the previous frame to
guide the sample distribution of the current one. We show that our
sample redistribution algorithm converges and better balances be-
tween early and late reflections. We evaluate our approach on dif-
ferent benchmarks and demonstrate significant speedup over prior
geometric acoustic algorithms.

Keywords: sound propagation, bidirectional path tracing

Concepts: •Computing methodologies→ Physical simulation;
Ray tracing;

1 Introduction

The rapid development of consumer virtual reality hardware in re-
cent years has sparked renewed interest in complex virtual environ-
ments and in generating high-quality user experiences that involve
the use of multiple senses. It is known that a greater correlation
between sound and visual rendering can significantly enhance the
sense of immersion. While there has been remarkable progress for
realistic visual rendering, the generation of high-quality acoustic
effects at interactive rates remains a major challenge.

One of the main goals of sound rendering is to simulate the prop-
agation of sound to take into account the environment, source lo-
cations and the listener’s position. In practice, sound propagation
results are combined with spatialized audio rendering for immersive
experiences. Prior work in sound simulation algorithms can be clas-
sified into two broad categories. The wave-based methods directly
solve the acoustic wave equation using numerical methods. The ge-
ometric acoustic (GA) algorithms model the propagation of sound
based on the concepts of ray tracing. Wave-based algorithms [Breb-
bia and Ciskowski 1991; Thompson 2006] can accurately simulate
all acoustic effects, including diffraction and scattering. However,
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Figure 1: The “Tradeshow” benchmark rendered by our BST and
the backward path tracing method with diffuse rain in a similar
propagation time of 18ms/frame. Based on bidirectional path trac-
ing with multiple importance sampling and temporal sample distri-
bution optimization, our method is able to generate energy response
with up to a 7dB higher signal-to-noise ratio.

they are computationally expensive, involve considerable precom-
putation, and are inefficient for high frequency simulation [Savioja
2010] and limited to static scenes [Mehra et al. 2013; Raghuvanshi
and Snyder 2014]. In contrast, GA methods use ray tracing to com-
pute specular and diffuse reflections and can also handle dynamic
scenes [Lentz et al. 2007; Schissler et al. 2014]. There is consider-
able work on extending ray tracing algorithms to approximate edge
diffraction [Tsingos et al. 2001] and handle complex environments
with multiple sources [Schissler and Manocha 2014]. However,
many issues arise in terms of using the resulting methods for inter-
active sound propagation. Current GA algorithms tend to use trial-
and-error methods to select the ray budget – an insufficient number
of rays can lead to aliasing artifacts in sound rendering. A larger ray
budget slows down the performance, and interactive simulation of
higher order reflections or dynamic late reverberation can be chal-
lenging. Stochastic methods like path tracing are better at handling
diffuse reflections, but their convergence can be a problem, espe-
cially for late reverberation. Besides, current GA algorithms do not
address issues related to quality differences between early and late
reflections, and lack a proper method to balance between them.

In order to address these problems, we first propose the use of the
signal-to-noise ratio (SNR) of the energy response of sound sources
as the metric to assess the quality of stochastic sound propaga-
tion simulation. We then show how to use general bidirectional
path tracing and multiple importance sampling in sound propaga-
tion simulation and maximize the SNR of the energy response. The
result is a novel sound propagation algorithm, called Bidirectional
Sound Transport (BST), which is able to handle multiple sources
in large virtual environments and provides higher than state-of-the-
art quality stochastic sound propagation algorithms with a similar
computation cost.

Some of our novel contributions include:

• We propose a new metric for assessing the quality of stochastic
sound propagation. With the new metric as a target function, we
present a numerical method to calculate the optimal sample dis-
tribution. The convergence properties of our method are proved.
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• We introduce a new algorithm that simulates the sound propaga-
tion by bidirectional path tracing (BDPT) with multiple impor-
tance sampling (MIS). The algorithm is able to provide better bal-
ance between early and late responses and produces higher qual-
ity sound rendering results than the state-of-the-art techniques.
To the best of our knowledge, this is the first application of BDPT
and MIS to sound propagation and has actually been shown to be
able to provide superior rendering results to backward or forward
path tracing. BST generates results of more stable quality as the
sound sources move around and it is therefore not necessary to
conservatively reserve ray budget for difficult sampling cases.

• We analyze the different sound propagation algorithms using the
SNR criterion and provide some insights that may be used to de-
sign improved sound propagation algorithms.

2 Related Work

In this section, we give a brief overview of prior work on interactive
sound propagation and path tracing.

2.1 Interactive Sound Propagation

Most earlier work in sound propagation was driven by architectural
acoustics and noise reduction, and the main focus was on the de-
velopment of offline algorithms. Over the last few decades, the
development of interactive ray tracing algorithms and their vari-
ants, along with the hardware capabilities of commodity proces-
sors, has resulted in realtime sound propagation algorithms. Some
algorithms exploit frame-to-frame coherence or tuning techniques
to use fewer rays [Schissler et al. 2014]. A recent survey of GA
algorithms is given in [Savioja and Svensson 2015].

There is considerable work on the development of precomputation-
based methods for interactive sound propagation in static scenes.
These include algorithms based on GA or wave-based methods
that store the precomputed impulse responses, transfer functions,
or sound pressure fields. In order to handle the large size of
these representations, many compression algorithms have been pro-
posed [Antani et al. 2012; Raghuvanshi et al. 2010; Raghuvanshi
and Snyder 2014; Mehra et al. 2013] that reduce the runtime mem-
ory overhead.

Sound propagation can also be accelerated by computing appropri-
ate simplifications of an acoustic environment. Due to the wave
property of sound, geometry details become less important, espe-
cially for lower frequencies. The simplest techniques use proxy ob-
jects like boxes [Antani and Manocha 2013] for the scene objects.
Other algorithms compute levels-of-details (LODs) corresponding
to different frequency bands [Pelzer and Vorländer 2010; Schissler
et al. 2014]. In order to deal with a high number of sources in
the scene, clustering is frequently used to accelerate the computa-
tions [Tsingos et al. 2004]. Other techniques exploit frame-to-frame
coherence to use only a few rays [Schissler et al. 2014].

2.2 Path Tracing

Due to its ability to handle complex scenes and generate unbiased
results, path tracing has been widely used in visual and sound ren-
dering. In order to simulate sound propagation, a traditional path
tracer emits random paths from each sound source. The paths in-
teract with the scene objects in various ways, and their contribution
is accumulated in the final result once the path intersects with the
listener. The listener is typically represented by a detection sphere.
In practice, the convergence of path tracing depends on the number
of sources, the complexity of the scene and the size of the detection
sphere. A detailed discussion can be found in [Vorländer 1988].

Recently, fast algorithms for complex scenes have been proposed
based on backward path tracing for many-source scenes [Schissler
and Manocha 2014]. While the complexity of forward path tracing
scales linearly according to the number of sources, the cost of back-
ward tracing scales sub-linearly. In practice, only a small portion
of emitted rays will eventually hit the detection sphere, and the hit
probability depends heavily on the size and structure of scene ge-
ometry. This characteristic is observed in forward as well as back-
ward path tracing. In order to achieve the best performance in a
certain scene, the user must make a trade between speed and ac-
curacy by adjusting the size of the detection sphere radius [Taylor
et al. 2012]. Another major disadvantage of backward path trac-
ing is its inability to handle ideal point sources. It is important
to support such point sources as they can be used to approximate
complex sound sources [Li et al. 2015]. One simple approach is to
approximate the point sources with smaller-sized spheres, but this
can decrease the efficiency of backward path tracing.

Some of these issues with path tracing can be addressed using the
concept of diffuse rain (DR) [Schröder 2011], which can be viewed
as a counterpart of next event estimation [Lafortune 1996] or the
VPL technique [Keller 1997; Dachsbacher et al. 2014] in graph-
ics rendering. DR requires no detection sphere, but instead builds
connections between the sources and the hit points on the emitted
paths. For scenes with no occlusion, this method guarantees the
validity of every connection. The original diffuse rain algorithm is
designed for spherical sources, but it can also support point sources
accurately. Moreover, the validity of the connection is independent
of the size of the scene objects, which makes this technique attrac-
tive for a large variety of scenes.

3 Bidirectional Sound Transport

In this section, we give an overview of our approach, describe the
new metric and use that for our BST algorithm. Our formulation is
based on the theory of GA, and sound propagation is modeled as
energy transport. The main objective of a GA simulator is to com-
pute the energy response ER(x, ω, t) of every sound source, where
x, ω, and t represent the listener position, the incident direction,
and the propagation delay, respectively. In order to perform sound
rendering, the resulting algorithm performs auralization that com-
putes the impulse response (IR) from ER() and convolves that with
the sound source. In the rest of the paper, we mainly deal with the
computation of the energy response.

3.1 Background

In this paper, we will use most of the terminology presented in [Sil-
tanen et al. 2007], with a few necessary modification for the conve-
nience of analysis in a path tracing framework.

Acoustic Transport Equation For sound propagation, a time-
dependent transport equation is proposed by [Siltanen et al. 2007].
We use a reformulated version of that equation in the rest of the
paper:

L(x′ → x, t) = L0(x′ → x, t)

+

∫
Ω

Ls(x
′ → x, t) ∗M(x′′ ↔ x′, t)dAx′′ ,

(1)

where L0(x′ → x, t) represents the radiance emitted by x′, and

Ls(x
′ → x, t) = L(x′′ → x′, t)G(x′′ ↔ x′)ρ(x′′ → x′ → x).

(2)
We use the following symbols in these equations. The time-variant
radiance is usually denoted as L(x, ω, t), where x, ω, and t repre-



sent the position, direction, and time, respectively. For the conve-
nience of analysis in a path tracing framework, we use L(x′ →
x, t) to represent L(x′, ω(x′ → x), t) so that the relationship
between the transportation formula and path nodes is expressed
clearly. The BSDF (bidirection scattering distribution function)
ρ(x′′ → x′ → x) and the geometry term G(x′′ ↔ x′) are repre-
sented in a similar manner. BSDF represents the acoustic property
of the scene geometry, and the geometry term explains the energy
dispersion and occlusion during the propagation. A is the area mea-
sure defined on the scene geometry Ω.

The media term, M(x′′ ↔ x′, t), accounts for energy absorption
and time delay caused by the propagation media through the con-
volution with Ls (the asterisk ∗ is the convolution symbol). For
homogeneous media it can be written as:

M(x′′ ↔ x′, t) = e−α|x
′′−x′|δ(t− |x

′′ − x′|
c

), (3)

where c is the speed of sound, α is the absorption factor, and δ(t) is
the Dirac delta function. This formulation of the rendering equation
does not account for diffraction effects.

It should be noticed that the energy response and the time-variant
radiance could be expressed in the same form. In actuality, we have

ER(x′ → x, t) = L(x′ → x, t), (4)

with f(x′′ → x′ → x) = 1. One can regard the energy response
as the radiance of an infinitely-small sphere at the position of the
listener. We will always use L(x′ → x, t) instead of ER(x′ →
x, t) in our analysis.

The transport equation can be rewritten in the operator form:

L = L0 + TL, (5)

where T is an operator defined as

TL =

∫
Ω

Ls(x
′ → x, t) ∗M(x′′ ↔ x′, t)dAx′′ . (6)

The rendering equation can be solved with the Neumann series ex-
pansion [Kreyszig 1978]:

L = (Id− T )−1L0 =

∞∑
i=0

T iL0, (7)

which turns Eq. (5) into an infinite sum of integrals that can be
evaluated with various numerical methods.

Monte-Carlo Path Tracing Monte-Carlo integration is a popu-
lar method that evaluates complex integrals in a probabilistic way.
Given a σ-finite measure µ1 defined on measurable space (Σ,X ),
Monte-Carlo integration evaluates the integral

∫
Σ
f(x)dµ1 by con-

structing a probability measure µ2 and sampling randomly from the
probability space (Σ,X , µ2). If we let p(x) be the Radon-Nikodym
derivative dµ2/dµ1 [Royden and Fitzpatrick 1988], we have

E[
f(X)

p(X)
] =

∫
Σ

f(x)
dµ1

dµ2
dµ2 =

∫
Σ

f(x)dµ1, (8)

where E[X] is the expected value of random variable X .

When evaluating T iL0 with the Monte-Carlo method, µ1 is the
product measure Ai defined on product measurable space Ωi, com-
monly referred to as the “path space of bounce i”. µ2 is the prob-
ability measure of path generation. A path X is a sample from Ωi,
f(X) is the energy impulse generated by sound propagation along
path X , and p(X) is its “probability of generation.”

Bidirectional Path Tracing To form the paths used for the Monte
Carlo integration in Eq. (8), a bidirectional path tracer [Lafortune
and Willems 1993; Veach and Guibas 1995] first generates subpaths
from both the source side (forward subpaths) and the listener (back-
ward subpaths), and then builds connections between the subpath
nodes to construct the final paths. These two steps are referred to
as the trace step and the connect step, respectively.

Given a subpath x0 · · ·xk, its generation probability can be ex-
pressed in the form below:

p(x0 · · ·xk) =pg(x0 → x1)G(x0 ↔ x1)·
k−1∏
i=1

pf (xi−1 → xi → xi+1)G(xi ↔ xi+1).

(9)
Here pg(x′ → x) is the probability density for the source to gen-
erate a path in the direction x′ → x, and pf (x′′ → x′ → x) is
the probability density for the outgoing path to be in the direction
x′ → x when given the incident path direction x′′ → x′. These
probability density functions depend on the implementation of path
emitters and the sound materials.

To simplify the expression, we denote the geometry term G(xi ↔
xi+1) as Gi,i+1, probability density pf (xi−1 → xi → xi+1) as
Vi (i > 0) and pg(xi → xi+1) as V0, and rewrite Eq. (9):

p(x0 · · ·xk) =

k−1∏
i=0

ViGi,i+1. (10)

When connecting the s-th node of a forward path and the t-th node
of a backward path, we form a complete path of bounce s+ t. Such
a connection is referred to as a (s, t)-connection. For a path X =
x0 · · ·xs+t+1 , its probability of generation by a (s, t)-connection
could be written as

ps,t(x0 · · ·xs+t+1) =

s∏
k=0

VkGk,k+1

s+t+1∏
k=s+1

Gk−1,kVk

=

∏s+t+1
k=0 Vk

∏s+t
k=0 Gk,k+1

VsGs,s+1Vs+1
.

(11)

Combined with f(X), we have f(X)/ps,t(X) as an estimator of
T s+tL0. We refer to such an estimator as estimator (s, t). It’s
worth noting that the nominator VsGs,s+1Vs+1 is only related to
the connection segment xsxs+1, and how the connection is formed
can have a major influence on the estimator.

Multiple Importance Sampling Given a forward subpath
x0 · · ·xk and a backward subpath yk · · ·y0, there are multiple pos-
sible connections between them to form a path and evaluate T iL0.
MIS combines these different estimators as:

T iL0 = E

 1

N

∑
j≥0,i−j≥0

1

cj

nj∑
k=0

wj,i−j(Xj,k)f(Xj,k)

pj,i−j(Xj,k)

 , (12)

where N is the total number of samples for evaluating T iL0, nj is
the number of samples for bounce j, and Xj,k, for k = 1 · · ·nj , is
the number of samples generated by the (j, i− j)-connection. The
symbol cj in Eq. (12) is the probability that a sample belongs to the
estimator (j, i− j).

A carefully designed weighting function can significantly decrease
the variance of the estimation. We use the balance heuristic:

wk,i−k(X) =
ckpk,i−k(X)∑

j≥0,i−j≥0 cjpj,i−j(X)
. (13)



Other weighting functions, like the power heuristic, may outper-
form the balance heuristic in cases where some estimation strategies
are much better than others. This could happen in visual rendering
when the scene contains glossy objects. However, in the context of
sound propagation, the contribution of specular reflection is much
less obvious, and the balance heuristic works well.

Sound Rendering vs. Visual Rendering Because sound propa-
gation in GA is similar to light propagation, many algorithms and
sampling analyses from visual rendering may be extended to sound
simulation. However, there are some key differences between light
and sound waves, and we therefore need to develop significant vari-
ants.

The spatial resolution of the human auditory system is far lower
than that of the visual system. For the localization of a single sound
source, the most optimistic error estimation is no less than 0.75 de-
grees for the azimuth angle and that of the elevation angle is even
larger [Blauert 1997]. In comparison, the angular resolution of the
human visual system is about 0.01−0.02 degrees at the foveal area
of the retina [DeValois 1988]. These characteristics have a consid-
erable influence on the quality assessment of the final rendering and
the choice of a simulation algorithm. For example, an important ad-
vantage of photon mapping over path tracing (for visual rendering)
is its low-frequency noise distribution. However, human auditory
systems are not sensitive to the spatial frequency of noise, and this
advantage is lost in the context of sound propagation.

In contrast, temporal information is essential for acoustic simula-
tion. The perception of sound and light are fundamentally differ-
ent in the way temporal information is processed. Different sound
receptors in our cochlea respond to different sound frequencies,
which implies that the sound information received by the brain
is not temporal, but tempo-spectral. This allows human auditory
system to extract more temporal information from sound. The
critical flicker fusion frequency of human eyes is generally below
60Hz [Mahneke 1957], while the upper bound of the human audible
frequency range is around 20000Hz.

The aforementioned difference has its influence on the design of
quality metric and propagation algorithms. In visual rendering, the
quality metric is generally defined as a function of position. In
sound rendering, however, one would expect the metric to be a
function of time. Therefore, controlling the quality in the tempo-
ral dimension is an important task for sound propagation. For GA
algorithms that involve stochastic sampling, quality control of the
temporal dimension requires the modification of the temporal sam-
ple distribution. However, unlike sampling direction, the time delay
of a sample depends on its propagation distance, which cannot be
manipulated directly. Therefore, we need an indirect method to
control the temporal distribution of samples.

3.2 SNR Metric for Stochastic Sound Propagation

In general, there is no well-accepted standard for evaluating the
quality of acoustic rendering. Current assessment methods usu-
ally involve investigation of user experiences [Rychtáriková et al.
2011; Nicol et al. 2014] and/or real world measurements [Pelzer
et al. 2011]. However, capturing measurements for all kinds of en-
vironments can be very challenging and expensive, and the current
perceptual evaluations of sound are restricted to a few specific envi-
ronments. A key issue in the design of a good simulation algorithm
is to have an appropriate quality metric. Such a metric should be
relatively easy to evaluate and should also correlate well with per-
ceptual evaluation. Because our sound simulation algorithm deals
with computing an energy response and uses the characteristics of
the acoustic transport equation, it’s natural to use the accuracy of
the energy response as the quality metric. As a result, we propose

the use of the signal-to-noise ratio (SNR) of the energy response as
the quality metric in our formulation. In particular, the SNR of a
random variable X is defined as

SNR[X] =
E[X]

σ[X]
, SNRdB[X] = 10 log10(

E[X]

σ[X]
). (14)

In practice, when we calculate the SNR of the energy response, we
render many frames with different random seeds under the same
conditions. The results are integrated over different time spans (re-
ferred to as “bins”) and in all incident directions. The SNR is calcu-
lated with the mean value of these integrals asE[X] and the sample
variance is represented as σ2[X]. These SNR values are arranged
in the time domain as the “SNR curve” as shown in various figures
in the rest of the paper for quality comparison. In most benchmarks,
the size of the bins is 3ms.

As compared to other quality criteria like energy response variance
and spectrogram variance, energy response SNR has many impor-
tant advantages. It has a simple formulation and does not require
expensive operations like FFT to evaluate. Moreover, it is indepen-
dent of the source intensity. In sound propagation, it is very impor-
tant to differentiate between early and late reflections, and energy
response SNR can easily handle such cases.

3.3 Bidirectional Sound Transport Algorithm

In this section, we present our novel sound propagation algorithm
based on BDPT.

Existing GA algorithms generate paths from the source or listener
to evaluate the Monte Carlo integration (Eq. (8)). To improve the
validity of generated paths, diffuse rain [Schröder 2011] is used to
build connections between the source/listener with the hit points on
the emitted paths. In the view of bidirectional path tracing, this
technique builds connections between source/listener side subpaths
with the listener/sources to form a complete path, and can be re-
garded as a special case of BDPT. On the other hand, since the
paths generated in this way have zero bounces on either source or
listener side, there is only one estimator for each T iL0 and the ben-
efit of MIS cannot be exploited. As a result, in scenarios where
different paths have a radiance with a large difference, diffuse rain
may generates energy responses with low SNR.

One natural way of solving the above problem is to use general
BDPT for sound propagation in combination with MIS. For sound
propagation, however, there is a complexity of temporal sample
distribution. Paths of different lengths correspond to different de-
lay values and contribute to different parts of the energy response:
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Figure 2: Temporal sample distribution of the original BDPT algo-
rithm in different benchmarks (see Sec. 5 for more details). When
straightforwardly applied to sound propagation, the original BDPT
favors a certain part of the response due to the way subpaths are
connected.



short paths for early response and long paths for late response. The
natural BDPT implementation favors a certain part of the response,
which corresponds to path lengths that can be formed by more pos-
sibilities of connecting source and listener side subpaths. See Fig. 2
for an illustration of this effect in some test scenes.

Direct manipulation of path lengths is difficult because the subpaths
and connections are generated stochastically. In the following, we
propose an algorithm to indirectly control the temporal distribu-
tion of samples. The basic idea is to exploit the coherence between
bounce number and path length, and allocate samples among the
path spaces of different bounces in every frame. We also exploit
the frame coherence and use the temporal sample distribution and
variance of the previous frame to derive the temporal sample distri-
bution of the current frame.

Path Generation Traditionally in bidirectional path tracing, for-
ward subpaths and backward subpaths are generated in pairs, and
connections are built between the subpaths that belong to the same
pair. In our approach, we use a connecting strategy that is similar
to [Pajot et al. 2011; Popov et al. 2015]. There is no restriction
on the correspondence of forward and backward subpaths in terms
of building connections, and any kind of connection between the
forward and backward subpath nodes is permitted. We illustrate the
difference in path generation of diffuse rain, original BDPT and our
method in Fig. 3.

(a) backward PT+DR (b) traditional BDPT (c) our method

Figure 3: Diagrams of connection schemes in different path tracing
algorithms, including backward path tracing combined with DR,
traditional BDPT, and our algorithm. Path nodes are colored in
red for backward subpaths and blue for forward subpaths.

Sample Allocation among Integrals The samples generated by
the path tracer can be categorized by the number of bounces along
the path. Such an interaction is represented as T in our operator-
form transport equation (5), and the samples of bounce i are used
to evaluate T iL0 in Eq. (7). With our new connection scheme, the
number of potentially valid paths is considerably larger, and we
will use only a small portion of them to produce the final result. We
need a scheme to determine the number of samples that are used to
evaluate each T iL0.

We will consider the natural BDPT sample distribution first. Sup-
pose that we have a forward subpath x0 · · ·xk and a backward sub-
path yk · · ·y0. By connecting xs and yt ,we have a sample of
bounce s+ t. For any k0 ≤ k (as the case k0 > k will cause prob-
lems for MIS), there are k0 +1 combinations for s and t that satisfy
s+ t = k0, which means that the number of samples increases lin-
early with path bounces. Thus the natural sample distribution is
more favorable towards the late responses.

We use the SNR criterion to guide an optimal sample distribution.
We use M sample bins, N integrals and S samples. We denote the
contribution from the n-th integral to the m-th sample bin as Xmn,
the variance of a single sample contribution from the n-th integral
to the m-th bin as σ2

mn, and the sample probability for the n-th
integral as xn. All the random variables Xmn are supposed to be

mutually independent. In this case, the sum of the energy response
SNR is given as

M∑
m=1

10 log10

E[
∑N
n=1 Xmn]

σ[
∑N
n=1 Xmn]

=

M∑
m=1

10 log10 E[

N∑
n=1

Xmn]−
M∑
m=1

5 log10 σ
2[

N∑
n=1

Xmn]

=

M∑
m=1

10 log10 E[

N∑
n=1

Xmn]−
M∑
m=1

5 log10(

N∑
n=1

σ2
mn

Sxn
).

(15)

Notice that
∑M
m=1 10 log10 E[

∑N
n=1 Xmn] is a constant. We need

to minimize the target function

M∑
m=1

5 log10(

N∑
n=1

σ2
mn

Sxn
) (16)

to maximize the total SNR. In order to optimize the target function
above, we devised an iterative algorithm based on the Lagrange
Multiplier Method [Bertsekas and Nedic 2003]. The iteration step
of this algorithm is shown below:

xn,i+1 =
α

M

M∑
m=1

σ2
mn
xn,i∑N
k=1

σ2
mk
xk,i

+ (1− α)xn,i. (17)

Here α is a positive value smaller than 1. In practice, we usually
choose a value between 0.4 and 0.7 (see our supplementary ma-
terial). To avoid division by zero, xn,0 must be all positive and
there must be at least one σmn > 0 for every m and n. Sample
bins and integrals that cannot satisfy this restriction can be ignored
without any consequence. The convergence proof of this algorithm
is present in our supplementary material.

In our implementation, the iteration is executed once during each
frame, and the resultant distribution of the previous frame is used
as the initial value for the current frame. This is equivalent to the
repetitive iteration when the sound environment is fully static. In
dynamic scenes, the distribution of the previous frame is used as a
good initial guess.

The iterative algorithm described above requires an estimation of
σ2
mn. This estimation must be reevaluated constantly to address the

changes of the sound environment. However, the variance estima-
tion can be inaccurate due to the computation budget or low sample
quality, which can lead to audible defects. In order to ameliorate
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Figure 4: Relationship between path bounces and the temporal dis-
tribution of samples. The data is generated by our BST renderer in
a cube room scene. The correlation between time and path bounces
is evident. We could alter the temporal sample distribution by con-
trolling the number of samples for each bounce.
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Figure 5: The effect of optimized sample distribution reflected by
SNR curves in different sound environments. With our optimized
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balanced, resulting in improved overall quality, measured in aver-
age SNR (ASNR).

the estimation quality, we exploit the temporal coherence and com-
bine the estimation of the current frame with the results from the
previous frame.

To control the quality of variance estimation, we tag every variance
estimation σ2 with a quality indicator Q, which could be regarded
as equivalent to the number of samples used for estimation. In each
frame, we achieve a new variance estimation σ2

0 from Q0 samples,
then combine σ2

0 with the estimation of the last frame σ2
i−1 to eval-

uate the estimation of the current frame σ2
i . To balance between

the quality and the responsiveness to scene changes, we designed
an update strategy of σ2 and Q:

σ2
i =


σ2

0 , Q0 > Q∗

Qi−1σ
2
i +Q0σ

2
0

Qi−1 +Q0
, Qi−1 +Q0 < Q∗

γσ2
i + (1− γ)σ2

0 , otherwise.

(18)

Qi =


Q0, Q0 > Q∗

Q0 +Qi−1, Qi−1 +Q0 < Q∗

Q∗, otherwise.

(19)

where Q∗ is a predefined quality standard, and γ is given as

γ =
Qi−1 −

√
Qi−1Q0(

Qi−1+Q0

Q∗ − 1)

Qi−1 +Q0
. (20)

A detailed discussion of the update strategy can be found in our
supplementary material.

Algorithm Summary The outline of our bidirectional sound prop-
agation algorithm is presented in Algorithm 1.

Sec. 3.1 covers most of the algorithm above, including the eval-
uation of w(·) and the sample allocation among estimators, as in
line 6. The main difference between our algorithm and the origi-
nal BDPT is the Optimize Step (line 18, 19) and the distribution of
samples among integrals (line 4). In the Optimize Step, the result-
ing temporal distribution of samples in the current frame is used to
evaluate the sample distribution among integrals of the next frame,
while at the beginning of the processing of every frame, the sam-
ples are distributed among integrals according to the distribution
evaluated in the last frame.

Algorithm 1 Bidirectional Sound Transport
Input:
Sound environment. subpath budget M , sample budget N , Maxi-
mum path bounce K.
Initialize:
Sample probability xn of bounce n as 1/K,
variance estimation σ2

m,n as 0.
Output: Energy response E(x, ω, t) of each frame.

1: for each frame do
2:
3: // Preparation
4: Allocate samples among bounces according to xn;
5: for i = 0 to K do
6: Allocate samples among different estimators of T iL0;
7: end for
8:
9: // Trace step

10: Trace new subpaths;
11:
12: // Connect step
13: Connect between the subpaths to generate samples;
14: Evaluate f(·), p(·) and MIS weight w(·) for each sample;
15: Evaluate ER(x, ω, t) according to Eq. (7) and Eq. (12);
16:
17: // Optimize step
18: Update σ2

m,n according to Eq. (18);
19: Update xn according to Eq. (17).
20: end for

4 Interactive Sound Propagation

In this section, we show how to combine our BST algorithm with
caching schemes that exploit the temporal coherence of sound prop-
agation to reduce the overall propagation computation. Note that
techniques mentioned in this section will introduce bias.

4.1 Diffuse Cache

Diffuse cache is a technique proposed by [Schissler et al. 2014]
that exploits the temporal coherence of sound propagation to im-
prove the render quality. Inspired by the (ir)radiance cache [Ward
et al. 1988; Křivánek et al. 2005] used in visual rendering, diffuse
cache maintains a moving average of certain intermediate variables
used in sound propagation to quickly update the contributions. Dif-
fuse cache gives the user a strong impression of temporal consis-
tency, which might otherwise require a huge number of samples to
achieve.

In the original version of diffuse cache, the entries are stored in
a hash table, and the query index is a list of subdivided face lists
of scene geometry. However, this cache structure is not practical
for our BST renderer, which generates a large number of samples
during every frame. We have found that the probability of having
two valid paths that can hit the same face list is extremely small,
and the most common operation in the diffuse cache algorithm is
the traversal of a large hash table, which can be time consuming.

In our formulation, the diffuse cache of a single frame consists of
a table of path node information and a queue of cache entries. The
information of a path node includes its position, normal and ma-
terial index. Every valid path of more than one bounce will add
an entry to the queue. For a valid path x0 · · ·xi, the cache entry
stores the value f(x1 · · ·xi−1)/p(x0 · · ·xi), the index of node x1

and xi−1, and the direction of x2 → x1 and xi−2 → xi−1 (if
valid). In a static scene, this information is sufficient to evaluate



f(x0 · · ·xi)/p(x0 · · ·xi) for any x0 and xi. The only informa-
tion that requires recomputation is the geometry term G(x0 ↔ xi)
and G(xi−2 ↔ xi−1). Since the geometry term contains visibility
information, an accurate reevaluation would be computationally ex-
pensive. To reduce the computation cost, we simplify the visiblity
test to a test of normal orientation, which still eliminates a portion
of invalid segments.

4.2 Path Cache

Subpath generation is one of the most computation-intensive tasks
within a BDPT-based tracer. In fact, generating a new node on a
path is always more costlier than connecting two nodes. In scenes
with static objects, one could reuse the subpaths emitted from fixed
sound sources and listeners. For example, when the listener is mov-
ing and the source is static, we could cache the subpaths emitted by
the source, or vice versa. This only works with BDPT-based algo-
rithms as they generate subpaths from both sides. Since the cached
paths cannot represent all the information of the sound environ-
ment, the resulting energy estimation will be biased.

In our implementation, the information of the generated subpaths
is stored and categorized by the emitter of the subpaths. Before
the trace step of the next frame, we check the status of each path
emitter to determine the validity of these cached subpaths. For a
certain emitter, if we have not detected any change that threatens
the validity of its cached subpaths, then the emitter is regarded as
“static.” It will not generate new paths in this frame, but reuse the
cached subpath information instead.

5 Results and Analysis

We have conducted a series of experiments in different sound en-
vironments to test the performance of BST and to compare it with
other existent sound propagation algorithms, especially backward
PT with diffuse rain. All of the results are produced by a computer
with an Intel i7 3.50Ghz CPU and 32GB memory.

Both the implementations of BST and the reference algorithm
(backward PT with DR, denoted as PT+DR in the following part of
the paper) execute on a single thread. We use SIMD instruction sets
to accelerate various parts of our implementations, including ray in-
tersection (with the help of an Embree raytracing engine [Wald et al.
2014]).

To make the resulting data comprehensible, we present a brief de-
scription of the benchmarks used in our experiments.

(a) (b) (c) (d) (e)

Figure 6: Sound environments used in our experiments: (a) Room-
set, 19266 triangles; (b) Elmia Round Robin, 1047 triangles; (c)
Crytek Sponza, 279163 triangles; (d) Sibenik Cathedral, 75155 tri-
angles; (e) Tradeshow, 177405 triangles.

Roomset An indoor scene with two floors, stairs, several small
rooms, and complex occlusion. The mean free path of this scene
is much shorter than the other scenes. Generating valid paths in
this type of scene is a very challenging task for sound simulators
due to severe occlusion.

Elmia Round Robin Model of a real concert hall with detailed
description of sound materials. A typical scene designed for offline

simulation. This model was originally used for the evaluation of
professional room acoustic software [Bork 2000].

Crytek Sponza A half-indoor scene created by Frank Meinl of
Crytek with detailed geometric objects and moderately complex oc-
clusion. This benchmark has been used by prior sound propagation
algorithms.

Sibenik Cathedral Indoor scene created by Marko Dabrovic with
little occlusion. This scene has a long reverberation time and the
quality of the late response is very important.

Tradeshow Huge indoor scene, the interior space of which is ap-
proximately 2.6×105m3. The sound sources, the listener, and most
of the occluders are located close to the floor of the scene geometry.
We know from the previous discussion that this scene is strongly
unfavorable to PT with diffuse rain.

5.1 Single Source Benchmarks

A key issue is to evaluate the rendering quality of the auralized
sound. In Sec. 3.2, we introduced our new quality criteria. How-
ever, an energy response can only represent the sound propagation
between a single source-listener pair, and does not extend directly
to multi-source environments. As a result, the quality assessment is
carried out in single-source scenes only.

In Fig. 7 we compare the rendering quality of BST and backward
PT+DR under comparable tracing performance. As shown, BST
achieves higher rendering quality (in terms of the SNR metric) than
PT+DR. Moreover, in scenes containing moving sources, BST pro-
duces more stable results than PT+DR. For PT+DR, we observe an
obvious drop in the SNR when the source moves close to scene ob-
jects. This is because the final connections of the source and the
hit points on the path vary significantly in length when the source
is located near scene objects. As can be seen from Eq. (11), the
connection segment can have a major influence on the estimator,
and therefore large variance in the length of the final connection
often leads to large variance in the geometry term in the nominator
of Eq. (11) and hence the estimator. In contrast, BST produces sim-
ilar SNR curves regardless of the source location, which indicates
that we will have stable rendering quality when the source is mov-
ing around the scene. This benefit of our algorithm makes it much
easier to determine the ray budget in interactive applications.

In Fig. 8 we compare the performance of BST with PT+DR un-
der comparable quality. In this experiment, the parameters of our
method are fixed to 100 subpaths per frame and 4 connections per
path node. The parameter for the reference PT+DR implementa-
tion is tweaked for each scene to match the output quality of our
method. The output results of 200 consequent frames are collected
for evaluating the data shown in Fig. 8. Note that the comparison
is for the sound propagation algorithms only and neither the path
cache nor the diffuse cache is used for both methods.

The result shows that our new algorithm outperforms PT+DR in all
5 scenes with a 2.5-58× speedup. The advantage of BST is related
to the scene geometry and most obviously shown in the Tradeshow
scene, in which the distance between the source and the floor is
small compared with the scale of the scene.

5.2 Multiple Sources

The speed advantage of BST above does not naturally extend to
multi-source scenes. In PT+DR, the computation cost of the trace
step scales sub-linearly with the source number, while BST needs
to compute the forward subpaths for every sound source. Since for-
ward subpath generation counts for a large proportion of the overall
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Figure 7: The SNR curves of energy responses rendered in two scenes. For the same algorithm, different cases in the same scene use the same
number of samples. Different algorithms use different numbers of samples to achieve comparable tracing performance. In the cube scene,
the sound source is located at the center of the cube in case 1, and near a corner-edge in case 2. In the Sibenik cathedral scene, the source
is represented as red dots in pictures above, and the geometry term for connection is visualized in grayscale. As shown, in scenes containing
moving sources, our BST produces more stable results than backward PT+DR. Moreover, our BST achieves higher rendering quality than
PT+DR, under comparable tracing performance.

propagation cost, as can be seen from Fig. 8, the time cost of BST
scales almost linearly with the source number. On the other hand,
source clustering is frequently used in practice to control the over-
all source number [Tsingos et al. 2004]. Moreover, in scenes with a
limited number of moving sources, the scalability of our algorithm
can be improved using path caching.

In our benchmarks, a fraction of the sound sources are fixed sound
sources and their positions are randomly chosen in the Tradeshow
scene and the Roomset scene, which represent the best and worst
case for BST. The computation budget for each sound source is the
same as in the single-source experiment (the number of subpaths is
fixed for backward PT with DR), which makes the render quality
similar to the results in Fig. 8 for every source. The performance of
different algorithms is shown in Fig. 9.

5.3 Validation

To verify the reliability of our algorithm, we have compared our
results with the commercial room acoustic simulation software
ODEON, which uses a GA-based algorithm that combines the
image-source method and path tracing. The simulation accuracy of
ODEON is validated by measured results. In fact, the IR generated
by ODEON in the Elmia Round Robin scene has a very good cor-
respondence with real-world measurements [Bork 2000]. Fig. 11
shows the comparison of energy curves generated by our algorithm
and ODEON in the Elmia Round Robin scene. We have compared
the energy curves of 6 octave frequency bands with the central fre-
quency between 250Hz and 8000Hz (since GA methods are inaccu-
rate in low frequency bands, we avoided comparison in extremely

low frequencies). These results match well for all bands, and the
average difference of energy in each band is between 1.32-2.33dB.

The unbiasedness of our algorithm is verified by our experiment
in a similar way to [Qin et al. 2015]. The validation is done by
comparing the average energy response of independent runs with
a ground truth calculated in a single run with a large number of
samples, and computing the RMS error. The result is shown in
Fig. 10. One can see that the error agrees with the square root
convergence rule of an unbiased Monte-Carlo estimator, which is
a typical behavior of an unbiased algorithm.

6 Conclusions, Limitations, and Future Work

We present a novel energy-based quality metric (SNR) and a sound
propagation algorithm based on BDPT. Our metric can be used for
formal evaluation of ray-tracing sound propagation algorithms and
we use this metric to characterize the performance of different al-
gorithms. Our algorithm can offer considerable speedup over prior
sound propagation algorithms based on forward or backward ray
tracing. We highlight its benefit on different benchmarks.

Our approach has some limitations. Our algorithm inherits part of
the limitations of GA methods: inaccuracy at low frequency and
inability to simulate all wave-based sound effects. Based on BDPT,
our method also has difficulty in processing materials with ideal
specular reflection, which are currently approximated with narrow
BSDFs. Our method for adjusting the temporal sample distribution
suffers from its low precision. Further, many features of the re-
sulting energy response, like the smoothness, cannot be controlled
by our approach. Finally, the scalability with the number of sound
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Figure 8: Comparison of different propagation algorithms in single-source scenes. The reported data is the average of all 200 output frames.
Values in column ASNR is the averaged SNR in the interval given in the Range column. The total time cost in this table includes the cost of
the “trace” step, the “connect” step, sample distribution optimization, and various trivial operations. One can see from the time cost that
BST outperforms backward PT+DR in all 5 benchmarks.
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Figure 9: Comparison of different propagation algorithms in multi-
source scenes of comparable quality. BST performance scales
worse than backward PT with DR in the Roomset scene due to its
inefficiency in handling a large number of sources and the absence
of scene features that favor BST.
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Figure 10: Bias experiment. The RMS error of our algorithm in the
Tradeshow scene is compared with the theoretical error estimation
calculated with the convergence rule of an unbiased Monte-Carlo
estimator. The experiment result matches with the theoretical esti-
mation very well.

sources of our method is worse than that of backward PT.

To better understand the relationship between the energy response
SNR and auditory perception, we plan to perform further evaluation
of the energy-based SNR metric and evaluate our algorithm in more
complex scenarios. In our benchmarks, most of the output energy
responses can be described with a few representative characteris-
tics, especially for the late response, which is well-described by its
decay rate. One could use these characteristics to “guess” the miss-
ing part of the energy response and reduce the overall computation
cost of our algorithm. We would also like to study the path reuse
techniques in sound propagation under the BST framework.
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RYCHTÁRIKOVÁ, M., VAN DEN BOGAERT, T., VERMEIR, G.,
AND WOUTERS, J. 2011. Perceptual validation of virtual room
acoustics: Sound localisation and speech understanding. Applied
Acoustics 72, 4, 196–204.

SAVIOJA, L., AND SVENSSON, U. P. 2015. Overview of geo-
metrical room acoustic modeling techniques. The Journal of the
Acoustical Society of America 138, 2, 708–730.

SAVIOJA, L. 2010. Real-time 3d finite-difference time-domain
simulation of low-and mid-frequency room acoustics. In 13th
Int. Conf on Digital Audio Effects, vol. 1, 75.

SCHISSLER, C., AND MANOCHA, D. 2014. Interactive sound
propagation and rendering for large multi-source scenes. Tech.
rep., Department of Computer Science, University of North Car-
olina. Submitted for publication.

SCHISSLER, C., MEHRA, R., AND MANOCHA, D. 2014. High-
order diffraction and diffuse reflections for interactive sound
propagation in large environments. ACM Transactions on
Graphics (TOG) 33, 4, 39.
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