
Efficient GPU Path Rendering Using Scanline Rasterization

Rui Li Qiming Hou Kun Zhou

State Key Lab of CAD&CG, Zhejiang University∗

Abstract

We introduce a novel GPU path rendering method based on scan-
line rasterization, which is highly work-efficient but traditionally
considered as GPU hostile. Our method is parallelized over bound-
ary fragments, i.e., pixels directly intersecting the path boundary.
Non-boundary pixels are processed in bulk as horizontal spans like
in CPU scanline rasterizers, which saves a significant amount of
winding number computation workload. The distinction also al-
lows the majority of our algorithmic steps to focus on boundary
fragments only, which leads to highly balanced workload among
the GPU threads. In addition, we develop a ray shooting pattern
that minimizes the global data dependency when computing wind-
ing numbers at anti-aliasing samples. This allows us to shift the ma-
jority of winding-number-related workload to the same kernel that
consumes its result, which saves a significant amount of GPU mem-
ory bandwidth. Experiments show that our method gives a consis-
tent 2.5× speedup over state-of-the-art alternatives for high-quality
rendering at Ultra HD resolution, which can increase to more than
30× in extreme cases. We can also get a consistent 10× speedup
on animated input.

Keywords: path rendering, vector graphics, GPU computing

Concepts: •Computing methodologies → Rendering; Rasteri-
zation; Antialiasing; •Theory of computation→Massively par-
allel algorithms;

1 Introduction

Vector graphics have been used in a wide variety of scenarios from
typography, web illustrations to stylized artistic design. Such im-
ages can be rendered onto any display surface from tiny mobile de-
vices to gigantic building posters, without introducing the pixelated
or blurry artifacts characteristic to resampling resolution-dependent
bitmaps. However, the costly rendering process has historically dis-
couraged real-time applications.

The majority of modern vector image standards follow the seminal
work of Warnock and Wyatt [1982] and rely on paths as the basic
primitive. Each path is essentially a set of curves, with a filled inte-
rior and/or thick lines generated by stroking and optionally dashing
the curves. From a rendering perspective, an implementation may
choose to approximate strokes as filled paths and for simplicity of
discussion we will focus on filled paths in this paper.

∗Corresponding authors: Qiming Hou (hqm03ster@gmail.com),
Kun Zhou (kunzhou@acm.org)
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org. c© 2016 ACM.
SA ’16 Technical Papers, December 05-08, 2016, Macao
ISBN: 978-1-4503-4514-9/16/12
DOI: http://dx.doi.org/10.1145/2980179.2982434

(a) Paris 30k, 56fps (b) Chords, 36fps
Figure 1: The two most challenging benchmark images we ren-
dered. Both images are rendered at approximately 2K×2K resolu-
tion with 32× super-sampling. Our method is able to render the
complicated map in (a) at 56fps, which has never been achieved
before.

A key challenge of path rendering is that the input curves spec-
ify only the path boundary – the filled interior must be determined
from the boundary representation. In modern standards, the inte-
rior is defined as the set of points whose winding number, i.e., the
number of times the path boundary winds counterclockwise around
the given point, passes a per-path fill rule. On the CPU, widely
deployed scanline rasterizers like WebKit [WebKit 2016] intersect
the path boundary with scanlines to generate horizontal spans. All
points on each span have identical winding numbers and can be pro-
cessed as a single unit. As mentioned by Kilgard and Bolz [2012],
this family of methods is highly work-efficient, as pixels outside the
path do not have to be processed and interior pixels do not have to
invoke the intense math involved with high-order curves. However,
traditionally such methods are also considered primarily sequential
and thus GPU hostile.

Consequentially, the majority of state-of-the-art GPU path render-
ing methods evaluate one individual winding number for each anti-
aliasing sample. While such a paradigm makes parallelization easy,
it performs more work than traditional CPU methods. In addition,
the winding number computation workload can vary considerably
across different samples, which would lead to poor load-balancing
when directly parallelized at the sample-level.

We propose a novel scanline rasterizer that enables work-efficient
path rendering on the GPU. Our method is designed around
boundary fragments, which are 2×2 pixel squares that intersect
with a path boundary. Like in CPU algorithms, we render non-
boundary pixels as horizontal spans delimited by boundary frag-
ments. This eliminates individual winding number computation for
span-covered samples, which makes our method work-efficient.

Our method is built upon an efficient GPU parallelization scheme
with two key properties. First, the distinction of boundary frag-
ments and non-boundary spans allows the majority of our algo-
rithmic steps to focus on boundary fragments only, which leads
to highly balanced workload among different GPU threads. Sec-
ond, our winding number computation algorithm does not perform
any memory access on a per-sample basis. Specifically, we first
compute the winding numbers at a fixed point on each fragment.
Then in a second kernel, we connect samples to this point using a
comb-like ray pattern (Fig. 5(b)). We then look up signed cross-

http://dx.doi.org/10.1145/2980179.2982434

ing numbers from bit-compressed tables, and the complete winding
numbers are immediately consumed in the fill rule test. The final
results are stored back as per-fragment bitmasks and sent to the
hardware rasterizer.

Experiments show that our method gives a consistent 2.5× speedup
over state-of-the-art alternatives for high-quality rendering at Ultra
HD resolution, which can increase to more than 30× in extreme
cases. We can also get a consistent 10× speedup on animated input.

2 Related Work

Here we focus on state-of-the-art GPU rendering methods and the
approaches we drew key inspirations from.

A widely-employed GPU solution is to decompose the filled paths
into simpler primitives that can be rendered natively. Loop and
Blinn [2005] employ a conservative triangulation scheme and re-
ject falsely covered samples in a shader. However, the conservative
triangulation has to be generated in a costly CPU preprocess.

Microsoft Direct2D [Kerr 2009] rasterizes pixel space trapezoids
and computes fractional coverage at edges. However, their trape-
zoidal tessellation is performed on the CPU which becomes a bot-
tleneck.

Kokojima et al. [2006] generate potentially self-overlapping trian-
gles and use the stencil buffer to compute winding numbers. Their
simpler triangulation can be generated at a significantly lower cost.
However, the algorithm can only process one path at a time and the
stencil buffer must be reset in-between. The per-path setup over-
head becomes a major bottleneck for complicated images with a
large number of small paths. Also, their triangulation can generate
a considerable amount of redundant pixel fills for high-curvature
input like Fig. 1(b), on which even simple stencil tests would accu-
mulate into a significant overhead.

The NVPR (NV path rendering) pipeline [Kilgard and Bolz 2012]
is a practical adoption of the stencil-based approach, using dedi-
cated driver extensions to mitigate the per-path setup cost. It has
demonstrated real-time performance on recent mobile GPUs and
has been adopted in commercial software [Kilgard 2014; Batra
et al. 2015]. Our method eliminates this setup cost at design level,
achieving a higher performance without relying on any feature ded-
icated to path rendering.

Early CPU scanline methods use edge list structures to lookup
scanline-curve intersections required to generated spans [Wylie
et al. 1967]. However, such data structures require on-the-fly main-
tenance and are not suitable for the fine-grain parallelization re-
quired by modern GPUs. Newman and Sproull [1979] further de-
veloped this method by computing intersections between all edges
and all scanlines and then sorting the intersections before rasteriz-
ing the spans. The idea of clipping boundary curves against pixels
and rasterizing horizontal spans then becomes a common technique
in this area and is followed by many works, including those we dis-
cuss bellow. Our method implements the same functionality using
GPU parallel primitives like sort and scan.

Kallio [2007] proposes a scanline rasterizer based on the edge-flag
algorithm [Ackland and Weste 1981], which uses a prefix sum of
bitmasks to implement anti-aliasing for triangles. While it is possi-
ble to adapt this method to render curves on the GPU, it requires one
separate prefix sum per anti-aliasing sample per scanline to com-
pute winding numbers for the non-zero filling mode. Our method
adopts an analogous bitmask approach. However, we use a ray
shooting pattern that obtains the same winding numbers while only
requiring a single prefix sum per scanline, which is significantly
more efficient on the GPU.

Manson and Schaefer [2011; 2013] apply a prefix-sum primitive
on pixel-sized scanlines to implement analytical shading integra-
tion inside pixels. Our scanline formulation is compatible with
their integration-based anti-aliasing scheme. However, in this paper
we focus on sampling-based anti-aliasing which better implements
standard-compliant fill rules.

The recent technique of [Whitington 2015] treats horizontal pixels
as rectangle spans. It clips spans against each other, and merges
spans together for hidden surface removal. It also takes tempo-
ral coherence into account for span updating. While we also see
spans as long horizontal lines, we leave clipping, blending and anti-
aliasing to hardware for optimal performance.

Our fragment generation step is similar to the previous CPU lattice-
clipping scheme presented by Nehab and Hoppe [2008]. We use
fixed-sized small fragments for better GPU parallelism. Also, while
Nehab and Hoppe [2008] create and store the generated segments
and test them against each sample, which consumes considerably
more memory bandwidth, we immediately consume relevant cross-
ing numbers after fragment generation and thus reduce memory
bandwidth and shader complexity. As a tradeoff, our method sacri-
fices random sample access capabilities, which limits applications
like texture mapping or arbitrary anti-aliasing filters.

Vector texture methods [Nehab and Hoppe 2008; Parilov and Zorin
2008; Qin et al. 2008; Wang et al. 2010; Ganacim et al. 2014] pre-
process the input paths into some data structure, from which one
can perform point-in-shape, area coverage, or texel color queries
at arbitrary locations. These methods allow highly flexible display
transformations, such as mapping vector graphics onto 3D surfaces
as a texture, and can achieve high rendering efficiency. On the other
hand, the texture construction is typically off-line, which prevents
such methods from handling dynamic input. The recent shortcut
tree [Ganacim et al. 2014] is notable in that its construction is also
accelerated by the GPU. Even if the precomputation cost of vector
textures is disregarded, supporting random sample access necessi-
tates a data structure querying cost at each sample, whereas our
method does not have such a cost for span-covered samples. In ad-
dition, the underlying data structure can have significant variation
in the query cost among different texture locations, which leads to
poor load-balancing on the wide SIMD threads of modern GPUs.

Some vector texture structures [Ganacim et al. 2014] can cull oc-
cluded fragments to avoid over-shading, which is not supported
in our current method. However, in practice our improved raster-
ization efficiency consistently offsets such over-shading as mod-
ern vector standards primarily employ very cheap shaders. Should
more expensive shading be needed, it is trivial to implement occlu-
sion culling on top of our current algorithm by adding a standard
depth prerendering pass with all opaque spans as the occluder ge-
ometry.

Diffusion curves is an alternative vector image representation that
does not use filled paths [Orzan et al. 2008; Finch et al. 2011; Sun
et al. 2012; Sun et al. 2014]. Our work vaguely resembles its prin-
ciple of processing boundary and non-boundary pixels separately,
but solves the unique problem of path rendering.

3 Algorithm Preliminaries

Our method takes SVG images [SVG 2011] as input, though we
only render path elements. Strokes have to be converted to filled
paths beforehand. All SVG curve types are supported, which in-
cludes lines, quadratic / cubic Bézier curves, and elliptical / circular
arcs. We support both non-zero and even-odd fill rules, both sRGB
and linearRGB color interpolation modes, and standard-compliant
color gradients and solid fills.

Figure 2: Pixel-sized scanline and boundary fragments. We use
pixel-sized scanline to generate boundary fragments for pixels di-
rectly intersecting a curve and horizontal spans for pixels com-
pletely covered by a curve. Note that pixels intersecting multiple
curves may generate multiple fragments which have to be merged
eventually.

Before applying our GPU rendering algorithm, we parse the SVG
file on the CPU and pack the curve vertices and fill attributes
and miscellaneous metadata of all paths into a fixed number of
flat buffers. This is analogous to standard polygon rendering in
OpenGL, where vertex and element arrays from different objects
are frequently packed into flat buffer objects for efficiency. The
original data ordering in the input file is preserved since it coincides
with the back-to-front blending order. The CPU code also packs all
color gradients into a single ramp texture and flattens the group
transformation hierarchy into a flat list of per-path matrices. The
data buffers, the ramp texture, and the matrix list are then copied to
the GPU as the input to our main algorithm, which renders every-
thing in a single batch. Unless otherwise specified, all operations
described in the following sections are performed on the GPU.

4 Scanline Conversion

Without loss of generality, in the following discussion we assume
the scanlines are horizontal. We also assume that when done se-
quentially, elements on the same scanline are processed left-to-right
and scanlines are processed top-to-bottom.

Traditional CPU scanline rasterization works by maintaining an ac-
tive edge list, which incrementally maintains all curve intersections
on the current scanline [Wylie et al. 1967]. When scanned sequen-
tially left-to-right, each pair of neighboring intersections forms a
horizontal span. As illustrated in Fig. 2, such spans can only be
fully covered or fully exposed by the scanned path, and the final
result can be produced by rendering all covered spans. Whether a
span is covered is determined by testing the winding number at an
arbitrary point on the span. However, an obvious obstacle work-
ing against efficient GPU parallelization is the sequential nature of
the left-to-right scan and the incremental maintenance of the active
edge list.

Key idea. Our GPU algorithm takes a pixel level approach. Specif-
ically, the “scanlines” in our algorithm are rectangles with a height
of one pixel, as in previous work (e.g., [Duff 1989; Whitington
2015]). As illustrated in Fig. 2, the intersections we generate are
curve segments produced by clipping a curve with the rectangle cor-
responding to a pixel. For convenience, we call such intersections
boundary fragments, as they correspond to the set of fragments that
would have been generated by rasterizing the boundary curves.

We also define a related concept called merged fragment, which
refers to the set of all boundary fragments generated by curves be-

Algorithm 1 Our scanline conversion algorithm
1: Apply view / object transformation to all curve vertices
2: // Generate fragments
3: for each curve i {
4: Generate a virtual intersection at t = 0
5: for each monotonic segment of curve i {
6: for each grid line j sequentially {
7: Compute the intersection position ti,j in ascending order
8: }
9: }

10: Generate a virtual intersection at t = 1
11: }
12: for each curve-grid-line pair (i, j) {
13: Generate a boundary fragment between ti,j−1 and ti,j
14: }
15: // Compute coverage
16: Sort the fragments by (y, x) ascending, segmented by path id
17: Merge same-pixel-same-path fragments
18: for each merged fragment (pathk, xk, yk) {
19: Initialize coverage bitmask MC(k) to 0
20: for each sample point (u, v) {
21: Compute winding number N(k, u, v) at (xk + u, yk + v)
22: if (N(k, u, v) matches the fill rule of pathk) {
23: Set the corresponding bit in MC(k)
24: }
25: }
26: }
27: // Final rendering
28: for each merged fragment (pathk, xk, yk) {
29: Render fragment (xk, yk) with coverage MC(k)
30: if (xk + 1 < xk+1 && yk == yk+1 && pathk == pathk+1) {
31: if (N(k + 1, 0, 0.5) matches the fill rule) {
32: Render span from (xk +1, yk +0.5) to (xk+1, yk +0.5)
33: }
34: }
35: }

longing to a given path on a given same pixel. The rightmost cov-
ered pixel on the scanline in Fig. 2 illustrates such a situation, where
fragments belonging to different curves of the same path end up in
the same pixel, and have to be processed as a single unit in several
algorithmic steps.

By formulating the problem around such fragments, we are able
to aggregate the non-boundary pixels into horizontal spans, thus
avoiding the cost of processing them individually. Since the num-
ber of boundary fragments and spans is a sublinear function of
screen resolution, this aggregation can save a considerable amount
of workload on modern high definition displays. The only excep-
tion is the final rendering step, which is performed using the highly
efficient hardware rasterizer. The fragments themselves can also be
generated independently from each curve and processed en masse,
which makes our method massively parallel thus highly scalable.

Algorithm 1 summarizes our scanline conversion algorithm. There
are three major steps. First, we generate the boundary fragments
by intersecting curves with pixel grid lines, which corresponds to
lines 2-14. The second step in lines 15-26 sorts the generated frag-
ments, merges them, and performs winding number tests to gen-
erate the per-merged-fragment coverage masks. Details regarding
the winding numbers will be discussed in Sec. 5. The final step,
detailed in lines 27-35, renders the final result onto a framebuffer
with hardware multi-sample anti-aliasing (MSAA) [Segal and Ake-
ley 2003]. In the following we will describe how we map each step
to the GPU and discuss key motivations to our algorithm design.

(a) Grid line intersections (b) The generated fragments

Figure 3: Generating boundary fragments for an example 7×6
monotonic segment. In (a), the vertical lines and their intersec-
tions are colored in red and the horizontal ones are colored in light
blue. After sorting, the segment between each pair of neighboring
intersections / curve end points becomes a boundary fragment.

Fragment generation. We start by creating one GPU thread for
each input curve, monotizing it, then intersecting each monotonic
segment with all relevant pixel grid lines in a loop, as illustrated in
Fig. 3(a). We use numerical root finding to compute the t value at
each intersection, where t is the variable parameterizing the curve.
The horizontal and vertical results are merge-sorted sequentially
within each thread, as shown in lines 6-8. Finally, as illustrated in
Fig. 3(b), the curve segment between each pair of neighboring in-
tersections is recorded as a boundary fragment, which corresponds
to lines 12-14.

While in this step it is possible to increase the parallelism beyond
the curve level, the current approach turns out to be the most ef-
ficient and the most numerically stable approach among all alter-
natives we tried. The intra-curve sequential processing allows us
to use a bisecting solver initialized from the previous intersection,
which enforces monotonicity. The sequential method also requires
considerably fewer iterations to converge than independently inter-
secting each curve-line pair, which outweighs the cost of reduced
parallelism. To alleviate load balancing problems created by each
curve generating a different number of fragments, we recursively
split long input curves in the CPU-side SVG parser until the maxi-
mum curve length falls below a fixed threshold.

Sorting. Line 16 in Algorithm 1 sorts the generated boundary frag-
ments in the correct order for horizontal spans to form between
neighboring pairs. Specifically, the fragments are sorted by their
owning path ids first, then by their y coordinates in ascending order,
finally by ascending x coordinates. This is equivalent to the pro-
cessing order in typical sequential scanline renderers, where each
path is processed individually by first sweeping scanlines top-to-
bottom, then processing each scanline left-to-right.

The sorting is the only step with a higher-than-linear time complex-
ity. As an optimization, we employ a segmented merge sort [Baxter
2013] and reorganize the input data to make the individually sorted
segments as short as possible. Specifically, we assume curves from
the same path are provided continuously and paths are specified in
back-to-front order. This matches the original input order and is
preserved throughout the entire algorithm, which allows us to sort
everything by path id for free and restricts the real sorting granu-
larity to the path level. In our benchmarks, the relatively small seg-
ments also make merge sort a more efficient choice than the more
commonly deployed radix sort.

Rendering. Once the winding numbers are computed, the final
step simply renders the fragments and spans using the hardware
rasterizer. We generate both fragments and spans as line primitives
in a single vertex buffer, then render everything in a single draw

(a) Out-of-screen fragments (b) Incorrect rendering

Figure 4: The−x-side fragments we keep and an incorrect render-
ing caused by discarding them.

call. Each span is rendered as a horizontal line passing through the
relevant pixel centers, and each boundary fragment is rendered as a
degenerated line one pixel in length. A shader computes a fill color
and passes the per-fragment coverage mask to gl SampleMask,
a built-in shader output that explicitly controls the set of MSAA
samples covered by a raster fragment. Span primitives have their
masks set to all-ones. Finally, since all fragments have been sorted
by path id, the rendering is naturally back-to-front and blending is
performed in the correct order.

Implementation Details. Two detailed issues have to be handled
carefully when implementing Algorithm 1. First, the process il-
lustrated in Fig. 3 may generate fragments outside the viewport.
As illustrated in Fig. 4(a), such fragments can be discarded only if
the fragment in question lies beyond the +x or ±y edges, whereas
fragments residing beyond the −x edge have to be retained. They
contain essential information required to resolve the coverage of
in-screen pixels, and removing them may cause the wrong pixels
to be filled as illustrated in Fig. 4(b). For viewport culling, we in-
stead perform a simple bounding box test for each path. A path is
discarded completely if its bounding box does not overlap with the
viewport at all.

The other detail omitted from Algorithm 1 is the dynamic memory
allocation. For example, the intersection step in lines 2-11 requires
generating a variable amount of data in each thread. We implement
such steps using the standard prefix-sum based approach [Sengupta
et al. 2007], which is highly efficient. Specifically, we first com-
pute the output size of each thread, then compute a prefix sum of
the sizes to compute per-thread addresses, and finally write the gen-
erated output in a second kernel.

5 Winding Number Computation

We base our winding number computation on the well-established
signed crossing method [Alciatore and Miranda 1995]. The method
works by shooting a ray to an infinitely far point and accumulat-
ing the ray-curve crossing events, where each event produces a ±1
count with its sign determined by the curve winding direction rela-
tive to the ray. The accumulated result is called a crossing number,
which is equal to the winding number if the ray leads to infinity
and the curves form a closed path. A naive implementation of this
method shoots rays from all samples into the same direction. Since
efficient GPU utilization requires a parallelization granularity no
coarser than boundary fragments, using a per-sample scanline pat-
tern would require storing the winding number change on each sam-
ple to memory, which results in an excessive amount of global data
dependency and could be prohibitively expensive on GPUs. As il-
lustrated in Fig. 5(a), each ray going in or out of the central pixel
represents the need to propagate one winding number across differ-
ent GPU threads. The propagations have to be implemented using
one separate prefix sum per sample per scanline, which would con-

sume a significant amount of memory bandwidth.

Our solution is a comb-like ray pattern that computes the same
winding numbers while keeping the data dependency at a minimum.
As illustrated in Fig. 5(b), we intercept the horizontal rays shot from
sample points at the left side, then make them continue vertically
and converge at the center-left point ((0, 0.5) in the figure). Data
dependency is limited to a single main ray continuing from there to
the next pixel, which maps to one prefix sum per scanline regard-
less of the number of samples. While our ray pattern may lead to
a different set of intersection points, if one traces the path leading
from each sample point to infinity and count the signed crossings,
one would still obtain exactly the same winding number.

For clarity of discussion, here we focus on one merged fragment k
and use a pixel-local coordinate system where the top-left corner of
its pixel is at (0, 0). We need to compute the winding number N
at MSAA sample points (u, v) and the fragment center-left point
(0, 0.5), based on a set of curve segments corresponding to original
unmerged boundary fragments. We define Ci(u0, v0;u1, v1) as the
signed crossing number generated by intersecting curve i with a ray
segment from (u0, v0) to (u1, v1). As illustrated in Fig. 5(b), for
each sample point (u, v), we first shoot a horizontal ray to (0, v),
then shoot a vertical ray to the center-left point (0, 0.5). Finally, all
center-left points on a given scanline are connected using a main
ray. The sample point winding number N(k, u, v) can be com-
puted by summing up the signed crossing numbers of the three ray
segments:

N(k, u, v) =NM (k) +NV (v) +NH(u, v), (1)

where NM , NV , NH are signed crossing numbers of the main ray,
the vertical ray, and the horizontal ray respectively. In the following
we analyze the three components one by one and show how they
can be computed efficiently on the GPU.

Main ray. Among the three components, only NM (k) =
N(k, 0, 0.5) depends on global information. Since we have already
sorted the merged fragments along the scanline direction, NM can
be computed recursively as

NM (k + 1) = NM (k) +
∑
i

Ci(0, 0.5; 1, 0.5), (2)

if fragment k and fragment k + 1 belong to the same scanline and
the same path, and NM (k + 1) = 0 otherwise. Note that Eq. (2) is
essentially a prefix sum. We simply compute Ci(0, 0.5; 1, 0.5) for
each boundary fragment based on curve endpoint coordinates and
then compute NM using an off-the-shelf segmented scan routine
[CUDPP Developers 2014].

(a) Naive approach (b) Our method
Figure 5: Rays used to compute winding numbers. Solid lines are
rays and dashed lines are curves. Sample points are shown as black
dots. Ray-curve crossings are shown as white circles with their
corresponding signs labeled inside.

Figure 6: Bitmasks generated for two different curves. When a
curve fragment does not intersect with the left pixel boundary, it
does not intersect with our vertical rays at all, leading to an empty
MV . This case typically occurs in boundary fragments that contain
a curve end vertex.

(a) MH approximation (b) Pre-splitting for 2×2 tiles
Figure 7: MH approximation. In (a), the linearized trapezoid is
represented as the intersection of three half planes. The rightmost
edge coincides with the pixel boundary and can be ignored. In (b),
three trapezoids are used to approximate each curve, which leads
to a more accurate bitmask when rendering 2×2 pixel tiles.

Vertical ray. Previous methods such as [Nehab and Hoppe 2008]
and [Ganacim et al. 2014] calculate winding numbers using hori-
zontal rays only. They create auxiliary segments to correct winding
numbers at fragment boundaries. We perform the same task using
vertical rays, which is mathematically equivalent to previous work.

The vertical ray crossing number NV can be computed as

NV (v) =
∑
i

Ci(0, 0.5; 0, v). (3)

Note that the curve segments involved are always monotonic as
guaranteed by our scanline conversion algorithm. Therefore, each
curve can have at most one intersection with the vertical ray re-
gardless of the sample point location. Given a fixed set of MSAA
samples {uj , vj}, we can pack the Ci(0, 0.5; 0, vj) values for all j
into a per-curve signed bitmask MV :

Ci(0, 0.5; 0, vj) = SV (i)bit(MV (i), j), (4)

where SV (i) is the crossing number sign if curve i intersects with
the pixel left boundary and 0 otherwise. bit(M, j) takes the j-th
bit of mask M . Fig. 6 provides an intuitive interpretation of the
bitmask MV . As illustrated, MV only depends on the vertical co-
ordinate of the curve-pixel intersection point, and can be computed
efficiently by querying a 1D lookup table prepared off-line. With
this bitmask formulation, the final crossing number becomes

NV (vj) =
∑
i

SV (i)bit(MV (i), j). (5)

Horizontal ray. The bitmask formulation of NV can be directly
applied to NH , leading to

NH(uj , vj) =
∑
i

SH(i)bit(MH(i), j). (6)

(a) Embrace (b) Tiger (a) Car (c) Hawaii (d) Boston (e) Paper

Figure 8: The test images as rendered by our method at Ultra HD resolution using WebKit convention. Full-size images are provided as
supplementary material.

As illustrated in Fig. 6, SH(i) is an analogously defined cross-
ing number sign and MH is an analogously defined bitmask. The
most significant difference from MV (i) is that MH(i) depends on
the entire sub-pixel curve geometry, which in turn depends on too
many parameters to build a practical lookup table. Therefore, we
choose to approximate the curve geometry as a line segment with
the same end points, which turns the MH -covered area into a trape-
zoid. The trapezoid edges correspond to a poly-line approximation
of the original curve. As illustrated in Fig. 7(a), for each trapezoid
edge, we first query a lookup table to obtain a bitmask that marks
all sample points on the appropriate side of the corresponding half
plane. The trapezoid mask are then computed as the bitwise and of
the three query results.

The lookup table backing our half plane queries is a 2D analogy
of the 3D half space lookup table developed by Laine and Karras
[2010]. Given a half plane n · (x − 0.5, y − 0.5) > c, where n is
a unit-length normal vector and c ≥ 0, we store the corresponding
bitmask at the point (0.5− 0.5c)n+ o in a 2D texture, where o =
(0.5, 0.5) denotes the center of the texture. For each texel of texture
coordinate t = (u, v), the corresponding half plane parameters are
given by n = normalize(t − o), c = 1 − 2 ∗ (t − o) · n. We
then get the bitmask corresponding to the half plane and store it into
the texel. When querying with a trapezoid line, we obtain n and c
from the line equation, and calculate the texture coordinate for the
table lookup. The resolution of the lookup table is 256×256 in our
current implementation.

Final summation. A final summation
∑

i is required to turn the
per-curve bitmasks into per-sample winding numbers. We imple-
ment this summation using an optimistic approach that utilizes
CUDA shared memory atomic operations whenever applicable and
falls back to a global memory approach otherwise. Specifically,
we first launch a kernel with one thread for each boundary frag-
ment curve i, which accumulates the per-curve per-sample NV and
NH values to a shared memory array. If all curves constituting a
merged fragment are found in the same thread block, we can be
sure that the accumulated result is complete. In such cases, we
combine the shared memory result with NM and test the complete
winding number against the fill rule in the same kernel. That al-
lows us to discard all intermediate results and only store a coverage
mask to global memory. For the remaining merged fragments, the
per-sample crossing numbers are stored to the global memory and
processed normally in a fall-back code path. Since the vast ma-
jority of merged fragments only contain a handful of curves, time
consumed by the fall-back path is negligible in all our experiments.

Bitmask size. The efficiency of our winding number computation
increases as the bitmasks become wider. To maximally exploit
this behavior, our final implementation renders each merged frag-
ment as a 2×2 pixel tile using a coverage mask 4× wider than
the original anti-aliasing rate. Specifically, we run the entire Algo-
rithm 1 except the final rendering step at half resolution. Once the
merged fragment coverage masks have been computed, we render

each fragment as a 2×2 line primitive, feeding its wide mask to a
shader that extracts the relevant bits as gl SampleMask for each
of the four pixels. The corresponding increase in MH approxima-
tion error is countered by uniformly splitting each curve into three
sub-pixel segments and approximating them independently during
winding number computation, as illustrated in Fig. 7(b). Shading
precision is not affected as the hardware rasterizer always executes
the color shader once per pixel regardless of the primitive size.

Degenerate cases. We handle degenerate cases by implicitly quan-
tizing them into non-degenerate ones during the table lookup.
Specifically, we carefully designed our lookup tables such that no
tabulated half plane passes through any of the sample points or co-
incides with a pixel boundary. To handle imprecisely clipped frag-
ments that generate a small extrusion or gap at the clipping bound-
ary, we maximize our safety margin by basing our ray pattern on
pixel center-left points and choosing sample locations away from
pixel boundaries.

6 Experimental Results

We implemented our method using CUDA with OpenGL inter-op.
The source code is available at http://gaps-zju.org/pathrendering.
All our experiments were conducted on an NVIDIA GTX 980 GPU.
We compare our method with three GPU methods, NVPR [Kilgard
and Bolz 2012], the shortcut tree [Ganacim et al. 2014] (abbrevi-
ated as MPVG following their source code), and the vector texture
method of Nehab and Hoppe [2008] (abbreviated as NH).

Since our method and MPVG only render filled paths, we converted
all strokes in the test images to filled paths using off-the-shelf tools,
and the same converted data set is used for all algorithms.

The comparison timing and images are generated by running the
code or the executable provided by the respective authors on our
hardware. For NVPR, we chose to run the “nvpr svg” sample in
the latest official SDK. Due to the lack of a single standard in sev-
eral detailed aspects of implementation, we adjusted the relevant
OpenGL states and shaders in our code to best match the rendered
images of each individual comparison target. The NVPR/MVPG-
compatible versions use the default gl SampleMask shader as
described in Sec. 4. All performance / quality benchmarks are re-
ported for pairs of implementations that produce matching images.

6.1 Performance Comparison

6.1.1 Comparison with NVPR

Comparing to NVPR (see Table 1), the work efficiency of our
method leads to a consistent 2.5× speedup at Ultra HD with 27×
MSAA. The ability to process multiple paths in one batch also gives
a significant advantage to our method for images composed from

http://gaps-zju.org/pathrendering

Paths Curves Resolution SNVPR SM NVPR SMPVG Our ENVPR EMPVG Our # frags.
8× 32× 8× 32× 8× 32× FPS 8× 32× 8× 32× mem.

Embrace 225 5K 1024x1096 0.8 2.1 0.6 1.6 5.6 5.5 530 0.5 0.3 0.5 0.4 3MB 60K
2048x2192 1.5 3.4 1.2 2.6 9.4 7.7 305 0.4 0.3 0.4 0.3 7MB 113K

Tiger 302 28K 1024x1055 1.1 2.6 0.8 2.1 4.9 5.1 559 0.7 0.4 0.7 0.4 6MB 119K
2048x2110 1.8 4.6 1.6 3.8 6.9 7.0 338 0.5 0.3 0.5 0.3 11MB 208K

Reschart 723 9K 1024x624 1.6 1.7 0.6 1.3 5.4 6.0 910 0.9 0.6 1.2 0.6 2MB 48K
2048x1248 1.4 2.7 1.1 2.7 8.6 9.2 662 0.8 0.7 1.4 0.8 5MB 83K

Hawaii 1K 92K 1024x843 1.2 2.4 0.7 1.4 5.9 4.3 296 0.5 0.3 1.1 0.9 19MB 376K
2048x1686 1.7 4.6 1.1 2.5 7.9 5.6 156 0.4 0.4 1.2 1.0 32MB 596K

Paper 5K 102K 1024x1325 5.9 4.8 0.5 1.2 7.4 7.5 550 1.3 0.8 1.6 0.9 12MB 226K
2048x2650 4.0 3.0 1.0 2.0 12.7 11.2 375 1.0 0.6 1.4 0.7 18MB 351K

Chords 18K 63K 1024x1024 2.6 8.3 2.2 6.6 4.5 4.1 64 1.3 0.7 1.8 1.0 209MB 4084K
2048x2048 6.0 28.7 4.6 11.9 5.2 4.1 36 0.9 0.5 1.3 0.8 421MB 8141K

Chords-Black 1 63K 1024x1024 1.7 5.4 1.7 5.4 4.3 4.0 64 1.3 0.7 1.8 1.0 209MB 4084K
2048x2048 3.4 10.1 3.4 10.0 4.6 4.1 36 0.9 0.5 1.3 0.8 421MB 8141K

Paris 30k 51K 1614K 1096x1060 7.9 6.0 1.2 2.8 3.4 2.7 82 0.8 0.5 1.4 1.0 164MB 2935K
2192x2120 5.3 3.5 2.5 5.3 5.2 3.4 56 0.6 0.4 1.1 0.9 220MB 4240K

Contour 53K 236K 1024x1024 34.3 30.5 0.7 2.2 6.4 5.8 301 0 0 0.3 0.4 39MB 739K
2048x2048 20.5 15.3 1.6 4.3 9.9 8.0 183 0 0 0.3 0.3 68MB 1241K

Table 1: Comparison results. The Sx columns are the speedup factors of our method over algorithm x when producing an image of
comparable quality. A number greater than 1 means our method is faster. The MPVG precomputation time is excluded from this comparison.
The end-to-end FPS data of our method is measured for the WebKit-compatible version at 32× MSAA. The Ex columns are the RMSE
error of our output images to those of algorithm x. The unit is 0.01× output dynamic range. The number in “n×” refers to the number of
anti-aliasing samples per pixel. The “# frags.” column is the number of boundary fragments generated by Algorithm 1.

Figure 9: Error created by merging paths. Left: overlapped paths
using the even-odd fill role. Right: overlapped paths with transpar-
ent fill.

many small paths (Paper, Paris, Contour and Chords), where the
per-path overhead of NVPR starts to dominate render time.

There is evidence that NVPR could achieve a higher performance
if one optimizes the OpenGL call sequence to reduce the per-path
API overhead [Batra et al. 2015], though we are unable to repro-
duce their results based on available vendor documents. Instead, we
approximate the overhead-reduced NVPR timing by aggressively
merging input paths with identical fill attributes. We denote this
path-merging NVPR as M NVPR. Note that this optimization is
not always correct for overlapping paths and an error case is shown
in Fig. 9. Leaving correctness aside, we run NVPR with both the
original SVG files and their path-merged versions. As illustrated
in Table 1, our method still has a remarkable speedup even with
path-merging enabled.

Most of our speedup over path-merging NVPR comes from the fact
that our method processes less pixels than NVPR. Fig. 10 compares
the total number of pixels filled by our fragments and spans, by the
NVPR stencil pass, and by the NVPR cover pass. On small cases
with short curves like Paper, NVPR processes 1.5× more pixels
than our method. On cases with long curves, complex sub-contours
or large non-convex areas, NVPR processes 2× to 100× more pix-
els than our method. The counter-intuitive slower rendering of path-
merged Paris 30k in Table 1 can also be explained using the pixel
count data, as the merged path generates less efficient anchor and

covering geometry than the original separate paths.

This difference in processed number of pixels can also be explained
from a complexity analysis point of view. Except for a per-curve
preprocess that generates geometry data needed by later passes, the
NVPR pipeline primarily consists of a stencil pass and a cover pass.
The stencil pass is based on the method proposed by Kokojima et
al. [2006]. The method first renders an anchor geometry, which is a
triangulation of the path boundary with all curves replaced by linear
segments. Then it renders a bounding triangle for each non-linear
curve with a discard shader to compensate for areas neglected by
the triangulation. The cover pass simply renders the bounding box
or the convex hull of an entire path to make sure the color shader
gets executed on all path-covered samples. When compared with
our method, we can deduct the common cost of shading actually
covered samples and only consider the boundary fragment process-
ing cost of our method, and the redundant pixels filled by NVPR in
the form of overlapping triangulation, false positives / negatives in
curve-discard triangles, and non-covered areas in the bounding box
/ convex hull. All three sources of NVPR redundant pixels increase
quadratically as the resolution increases, whereas the number of
boundary fragments in our method only increases linearly. This en-
abled our method to scale better at high resolution / anti-aliasing
rates.

6.1.2 Comparison with Vector Textures

We first compare our method to NH. As illustrated in Fig. 11,
our complete pipeline is 2× faster than their rendering stage on
the dataset they provided. The majority of this speedup comes
from eliminating the redundant winding number computations in-
side span areas. This is a fundamental cost in vector texture ap-
proaches, which trades redundant computations for flexibility. Note
that NH also supports a prefiltered rendering mode, which only
evaluates one “sample” in each pixel after filtering the fragments.
This prefiltered rendering mode of NH can be compared with a non-
multisampling version of our method. As shown in Fig. 11, we ob-
tain less performance speedups as the number of samples decreases.

When comparing to MPVG, we ignore their data structure construc-

0

2×107

4×107

6×107

8×107

1.0×108

1.2×108

1K 2K 1K 2K 1K 2K 1K 2K

tiger embrace paper hawaii

our method

NVPR-stencil
NVPR-cover

NVPR-stencil-merged
NVPR-cover-merged

0

0.5×109

1×109

1.5×109

2×109

2.5×109

3×109

3.5×109

4×109

1K 2K 1K 2K

paris-30k chord

Figure 10: The number of rendered pixels. For our method, this corresponds to the number of pixels filled by our fragments and spans. For
NVPR, it is the number of pixels covered by path anchor geometry in the stencil step and pixels covered by path convex hulls, the tightest
option available, in the cover step. The suffix “-merged” indicates that the path-merge optimization is used.

tion time and compare our entire pipeline to their rendering step, see
Table 1 for timing comparison. Querying a sample in their short-
cut tree has a cost roughly proportional to the tree depth, which
can reach over 10 for real scenes. In addition, traversing each tree
level requires at least one random memory fetch and one branch. In
contrast, our method operates entirely on boundary fragments ex-
cept for the final rendering step. Our winding number computation
has no significant branching and only performs 6 memory fetches
for each fragment, which averages to less than one fetch per sample.
Finally, MPVG is limited to per-sample shading by design, whereas
our method, like NVPR, can utilize the more efficient per-fragment
shading natively provided by modern graphics pipelines.

The Chords image is a chord diagram visualization of a randomly
generated matrix, which mainly consists of chords formed by long
cubic curves connecting random points on the outer circle. Despite
its small size, this example is a challenging case for all three algo-
rithms. To our method, the thin chords barely generate any mean-
ingful spans and almost the entire image is rendered as boundary
fragments. To NVPR, the long curves lead to highly inefficient
triangulations and each transparent chord has to be rendered as a
different path to produce the correct blending. The chord-black
variant listed in Table 1 replaces the fill color of all paths to solid
black, allowing the entire image to be merged into one single path
for NVPR. That removes the impact of the per-path overhead and
provides additional evidence for our cost analysis. To MPVG, the
long curves are very hard to separate in their spatial subdivision
structure. Despite the challenge, our method still scales gracefully
and delivers a reasonable performance, while still being faster than
the similarly scalable MPVG. On the other hand, both our method
and MPVG have to consume a considerable amount of memory to
achieve this scalability.

Regarding memory consumption, our method starts directly from
raw curve vertices and indices and does not store any information
persistently (save for the lookup tables that are approximately 1MB
in size). The numbers reported in Table 1 are the peak memory con-
sumption excluding input and output, which is reached just before
the final OpenGL draw call. Overall, our memory consumption is
roughly proportional to the number of boundary fragments, which
only increases sub-linearly as the resolution increases. This also
matches our performance scaling behavior.

0

1

2

3

4

5

6

7

8

drops embrace tiger
our method no ms NH prefiltered our method 8×ms NH 8×ms

Figure 11: Rendering time of our method and NH in millisecond.
We compare our non-multisampling configuration with NH’s pre-
filtered rendering mode, and also compare the two methods with
8× multisampling.

6.2 Rendering Quality

Fig. 14 provides a visual comparison between our method and a
ground truth rendering using the Reschart image, which is a test
case designed to highlight sub-pixel anti-aliasing issues. As illus-
trated, our result appears identical to the reference. Table 1 shows
the root mean squared error (RMSE) of our rendering result to each
comparison target. This difference mainly represents the approx-
imation errors caused by our linearization and table lookup steps.
The overall error is at approximately one percent of the output dy-
namic range, which is very modest.

For a quantitative analysis of our approximation errors, we have
constructed dedicated test cases to better exercise our two error
sources – look-up table quantization and sub-pixel curve lineariza-
tion. We compare our method using MPVG as a reference. We
modified both implementations to use exactly the same set of sam-
pling positions and moved all operations to the linear color space.
The test cases are designed to only contain fully-saturated color val-
ues and no overlapping / blending. Such a setup allows the number
of differing samples in each pixel to be directly calculated from the

RMSE ME NE/NB
1 ≥ 2

line 0.0106 2 1.066% 0.0006%
fan 0.0132 10 4.322% 0.6633%
thin-quad 0.0029 3 1.283% 0.0311%
fat-quad 0.0035 2 1.139% 0.0038%
quad-in-pixel 0.0013 2 0.004% 0.0004%
quad-in-frag 0.0026 3 0.005% 0.0014%
cubic 0.0105 6 3.252% 0.4956%

Table 2: Approximation error analysis. ME is max number of in-
correct samples in one pixel. NE/NB is the percentage of curve-
boundary pixels containing a given number of incorrect samples.

(a) Lookup table error (b) Curve approximation error
Figure 12: Two example pixels. Incorrect samples are shown as
red ×. The solid purple curves show the correct path boundary,
and the green dashed lines show the line segments corresponding
to the actually fetched mask table entries.

color difference between the two output images.

Table 2 shows the distribution of approximation errors in various
test cases (see the test images in the supplementary material). The
“lines” image contains a series of right-angled triangles with a con-
tinuously varying hypotenuse slope, which is designed to test the
look-up table texels where the quantization error is the highest. The
“fan” image is a fan of 180 triangles sharing the same tip, which is
designed to test the error accumulation when many curves share
the same pixel. “thin-quad”, “fat-quad”, “quad-in-pixel”, “quad-in-
frag” and “cubic” enumerate quadratic and cubic curves with con-
tinuously changing curvatures, which are designed to exercise our
sub-pixel curve linearization. The “transparent-fan” in Fig. 18 is a
transparent disk formed by 360 triangles, which demonstrates that
our approximation remains consistent at coinciding edges.

As shown in the table, our approximation is able to correctly render
95% boundary fragments in the test images. 99.5% fragments are
rendered with one or less wrong samples. This is well below the
variance that can be introduced by varying sampling positions, and
the difference is imperceptible on the final output image. In the rare
cases where we do introduce noticeable error, the approximation
remains visually plausible. Fig. 12 shows two single-curve worst
cases with 4 incorrect samples inside one pixel at 32× MSAA.
As illustrated, the approximation errors correspond to a subtle dis-
placement of the underlying curves and normally would not become
objectionable when visually inspected on the final image. Fig. 13
shows one case that could introduce cracks due to the poly-line
approximation, which may cause background color leak in fully-
covered areas. Finally, as illustrated in the “transparent-fan” im-
age, our approximation always produces exactly complementing
bit-masks for pairs of coinciding edges and do not generate con-
flation artifacts.

crack

Figure 13: Illustration of the crack case. The indicated central area
should have been completely covered by the three circles. However,
with our poly-line approximation, this small area becomes exposed,
resulting in background color leak. Here we draw a 6-segment ap-
proximation to better visualize the crack. In practice, a pixel-size
circle would have been approximated with more segments in our
implementation due to the circle-to-rational conversion and mono-
tizing processes. Adding a curvature-based adaptive splitting step
can also reduce such artifacts.

Embrace 1024×1096
2048×2192

Tiger 1024×1055
2048×2110

Car 1024×682
2048×1364

Reschart 1024×624
2048×1248

Hawaii 1024×843
2048×1686

Boston 1024×917
2048×1834

Paper 1024×1325
2048×2650

Chords 1024×1024
2048×2048

Paris 30k 1096×1060
2192×2120

Contour 1024×1024
2048×2048

Curve intersection Sorting
Winding numbers OpenGL rendering

Table 3: Relative timing visualization for each algorithm step for
NVPR-compatible rendering at 32×MSAA. The length of each bar
is proportional to the time spent on the corresponding step.

6.3 Memory

Fig. 15 shows the memory footprint of our method as a function
of the output resolution. We vary the resolution from 128×128 to
2048×2048. Our method allocates memory to store curve frag-
ments, merged fragments and spans, which increase in proportional
to the total curve length in pixels. The result shows that our mem-
ory consumption grows linearly as the square root of total number
of pixels, with a slope that depends on the scene complexity.

6.4 Performance Analysis

Time breakdown. Table 3 visualizes the per-step breakdown of
our rendering time at 32× MSAA. For the smaller test images,
curve intersection consumes a higher fraction of total render time.
This is caused by our curve-level parallelization, which results in
GPU under-utilization for small images. Nevertheless, the absolute
overhead remains tolerable. It is also notable that the time spent
in the fragment-centric non-GL steps reduces in proportion to the

(a) Our result using 32×MSAA

(b) NVPR reference with 512× super-sampling
Figure 14: The Reschart image rendered at its original 1024×624
resolution. The reference image is generated by down-sampling a
4×4 larger image rendered using NVPR with 32× MSAA.

GL rendering time as the resolution increases, which is a natural
consequence of the sub-linear fragment count scaling.

Algorithm validation. To demonstrate the optimization brought
by each individual design choice, we implemented a naive GPU
scanline path renderer and progressively added features / optimiza-
tions until it matches our final algorithm. Fig. 16 illustrates the per-
formance differences among the following implemented variants:

• no-ms. A naive scanline rasterizer with 1×1 boundary frag-
ments and no multi-sampling. It only tests one sample at the
pixel center using implicit function test, then calculates wind-
ing number use per-pixel-scanline prefix sum. The implicit
function code is taken from MPVG.

• i-sample-scan. A naive rasterizer with 32× multi-sampling.
32 prefix sums are needed for each horizontal pixel line. Sam-
ples are still tested using the implicit function, which is indi-
cated by the prefix i.

• mask-sample-scan. This is based on i-sample-scan. The
implicit function tests are replaced with our bitmask lookup
tables, which is indicated by the perfix mask.

• i-pixel-scan and mask-pixel-scan. These are based on
i-sample-scan and mask-sample-scan respectively. The
comb-like ray pattern is added, which replaces the 32 prefix
sums per scanline with a single one per pixel that computes
NM . The difference is compensated by the NV term.

• i-frag-scan and mask-frag-scan. These are based on i-pixel-
scan and mask-pixel-scan respectively. The boundary frag-
ments are enlarged to 2×2 pixels.

The result shows that each of our design choices makes measurable
improvements to a few rendering steps. Combining all of them to-
gether has a significant net effect, where the end-to-end rendering
speed becomes comparable with the non-antialiased version.

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

128 256 384 512 768 1024 1536 2048

tiger embrace paper hawaii contour paris-30k chord

Figure 15: Memory consumption. The horizontal axis shows out-
put image height in pixels. The vertical axis shows our memory
usage in MB.

data packing copy to gmem 1K rendering
Embrace 0.14 0.29 1.87
Tiger 0.79 0.62 1.79
Reschart 0.25 0.35 1.10
Hawaii 7.58 3.21 3.38
Paper 3.92 1.79 1.82
Chords 0.58 0.64 15.63
Paris-30k 56.59 17.57 12.20
Contour 7.13 2.74 3.32

Table 4: The CPU preprocessing time and 1K resolution rendering
time in milliseconds. The “date packing” column represents the
cost of packing an object-oriented representation SVG data into a
structure of bit-compressed flat arrays. The “copy to gmem” col-
umn corresponds to the time spent inside cudaMemcpy during the
preprocess.

From i-sample-scan to mask-sample-scan, the table-lookup op-
timization makes the curve intersection step 2∼4× faster at lit-
tle quality loss. Similar speedups can be observed under the
pixel-scanline and fragment-scanline configurations. From mask-
sample-scan to mask-pixel-scan to mask-frag-scan, the comb-
like ray pattern reduces the number of prefix sums per scanline
from 32 to 1 to 0.5. This significantly reduces the net memory
bandwidth consumed during winding number computation, which
results in a considerable speedup. Finally, from mask-pixel-scan
to mask-frag-scan, switching to 2×2 fragments reduces the total
number of fragments we have to generate, which makes the curve
intersection and sorting steps faster with little performance loss in
the final rendering step.

6.5 Setup cost

Our implementation stores vector graphics data as a structure of ar-
rays. We perform a data packing and rearranging step on the CPU
after parsing the SVG file and then copy the data to the GPU for ren-
dering. CUDA and GPU launch overheads, plus miscellaneous per-
frame tasks such as passing transformation matrices to the GPU,
have been included in the reported rendering time. Table 4 shows
the CPU preprocessing timing together with the rendering time for
a single frame. The preprocess cost is negligible on small inputs but
costly on large scenes, which might limit applications that require
low setup latency (e.g., a web browser). Also, implementing the
data packing step on the GPU may improve the performance.

0

10

20

30

40

50

60

no
-m

s

i-s
am

pl
e-

sc
an

m
as

k-
sa

m
pl

e-
sc

an

i-p
ix

el
-s

ca
n

m
as

k-
pi

xe
l-s

ca
n

i-f
ra

g-
sc

an

m
as

k-
fr

ag
-s

ca
n

no
-m

s

i-s
am

pl
e-

sc
an

m
as

k-
sa

m
pl

e-
sc

an

i-p
ix

el
-s

ca
n

m
as

k-
pi

xe
l-s

ca
n

i-f
ra

g-
sc

an

m
as

k-
fr

ag
-s

ca
n

chrod_1k paris-30k_1k
Curve intersection Sorting Winding numbers OpenGL rendering

Figure 16: Scanline comparison time break down in milliseconds.
We show the performance differences among several implementa-
tion variants of our algorithm.

Figure 17: Paris-30k clipped to the union of all paths in Tiger. Our
algorithm can use NVPR to populate the stencil buffer for clip-path
support.

6.6 Vector Animation

Our fully-GPU scanline pipeline allows us to easily support ar-
bitrary vector animation. We allow each frame to be gen-
erated from scratch with changing path topology, vertex posi-
tion or shading attributes. In the supplementary video we im-
plement an animated visualization similar to that provided by
http://blog.csaladen.es/refugee/. Our method runs 14.8× faster
than NVPR and 11.8× faster than MPVG on this animation, which
allowed us to render this sophisticated demo in real-time.

Compared with MPVG, our method eliminates the need to con-
struct a tree for acceleration, which is still expensive even when par-
allelized on the GPU. NVPR has a baking step that constructs the
various geometry data required by the stencil and cover passes. This
step currently requires the path data to be updated on the CPU using
glPathSubCommandsNV or glPathSubCoordsNV, which
turned out to be very expensive in our experiments.

7 Limitations and Future Work

Our main limitation is the lack of native support for strokes and
more advanced features like clip paths. We have implemented a
simple recursive subdivision stroke-to-fill convert algorithm [Tiller

(a) Triangle fan.

(b) Transparent triangle fan.

Figure 18: Quality test results. (a) A fan of 360 triangles with alter-
nating black and white colors, which shows the sampling artifacts.
(b) A semi-transparent disk formed by a fan of 360 black triangles,
which demonstrates that our approximation remains consistent at
coinciding edges.

and Hanson 1984] on the GPU, which consumes an additional
∼15% rendering time on our current test scenes. However, more
efforts are still needed to render dashed strokes. On the other hand,
since our method implements the final rendering pass in the conven-
tional GPU pipeline, it is compatible with the majority of NVPR-
based application-level techniques [Batra et al. 2015] and relevant
OpenGL extensions, including NVPR. That allows the relevant fea-
tures to be implemented outside our algorithm. For example, to
implement clipping, we can simply invoke NVPR to populate the
stencil buffer with the clip-path, then render the draw-path using
our method with a stencil test enabled. A simple result is illus-
trated in Fig. 17. We also implemented a prototype hybrid ren-
derer that handles filled paths using our method and strokes using
NVPR, which avoids the stroke-to-fill conversion. This approach
has not yet reached a competitive performance due to the overhead
we experienced when mixing GL draw calls with NVPR strokes.
However, such overhead would likely see a significant reduction if
NVPR strokes could be made compatible with the NVIDIA com-
mand list extension.

The constant overhead of CUDA kernel launches, CPU-GPU syn-
chronization and CUDA-GL context switches amounts to approx-
imately 1.5ms in our method. This gives us a considerable disad-
vantage on the smaller test cases. A sort/scan library optimized for
indirect kernel launching could likely reduce this overhead.

The most important future work direction would be providing na-
tive support for strokes. It would be also interesting to try to replace
the winding number tests with an analytical integration approach
[Manson and Schaefer 2011; Manson and Schaefer 2013; Kallio
2007]. Finally, adapting our method to mobile platforms may re-
quire some non-trivial changes, since mobile GPUs may have dif-
ferent performance characteristics than their desktop counterparts.

http://blog.csaladen.es/refugee/

Acknowledgments

The authors would like to thank the anonymous reviewers for their
helpful comments, and Stephen Lin and Yiying Tong for proofread-
ing the paper. This work is partially supported by the National Key
Research & Development Plan of China (No. 2016YFB1001403),
the NSF of China (No. 61272305, No. 61472352), and the National
Program for Special Support of Eminent Professionals of China.

References

ACKLAND, B. D., AND WESTE, N. H. 1981. The edge flag al-
gorithm: A fill method for raster scan displays. IEEE Trans.
Comput. 30, 1 (Jan.), 41–48.

ALCIATORE, D., AND MIRANDA, R. 1995. A winding number
and point-in-polygon algorithm. Department of Mechanical En-
gineering Colorado State University, Fort Collins, CO.

BATRA, V., KILGARD, M. J., KUMAR, H., AND LORACH, T.
2015. Accelerating vector graphics rendering using the graph-
ics hardware pipeline. ACM Trans. Graph. 34, 4 (July), 146:1–
146:15.

BAXTER, S., 2013. Modern GPU. https://nvlabs.github.io/
moderngpu/.

CUDPP DEVELOPERS, 2014. CUDPP. http://cudpp.github.io/,
version 2.2.

DUFF, T. 1989. Polygon scan conversion by exact convolution. In
International Conference On Raster Imaging and Digital Typog-
raphy, 154–168.

FINCH, M., SNYDER, J., AND HOPPE, H. 2011. Freeform vector
graphics with controlled thin-plate splines. ACM Trans. Graph.
30, 6 (Dec.), 166:1–166:10.

GANACIM, F., LIMA, R. S., DE FIGUEIREDO, L. H., AND NE-
HAB, D. 2014. Massively-parallel vector graphics. ACM Trans.
Graph. 33, 6 (Nov.), 229:1–229:14.

KALLIO, K. 2007. Scanline Edge-flag Algorithm for Antialiasing.
In Theory and Practice of Computer Graphics, The Eurograph-
ics Association, I. S. Lim and D. Duce, Eds.

KERR, K. 2009. Introducing Direct2D. MSDN Magzine 3, 4.

KILGARD, M. J., AND BOLZ, J. 2012. GPU-accelerated path
rendering. ACM Trans. Graph. 31, 6 (Nov.), 172:1–172:10.

KILGARD, M. J., 2014. NVIDIA path rendering: Accelerating
vector graphics for the mobile web. http://www.slideshare.net/
Mark Kilgard/gtc-2014-nvidia-path-rendering.

KOKOJIMA, Y., SUGITA, K., SAITO, T., AND TAKEMOTO, T.
2006. Resolution independent rendering of deformable vector
objects using graphics hardware. In ACM SIGGRAPH 2006
Sketches, ACM, New York, NY, USA, SIGGRAPH ’06.

LAINE, S., AND KARRAS, T. 2010. Two methods for fast ray-
cast ambient occlusion. In Proceedings of the 21st Eurograph-
ics Conference on Rendering, Eurographics Association, Aire-
la-Ville, Switzerland, Switzerland, EGSR’10, 1325–1333.

LOOP, C., AND BLINN, J. 2005. Resolution independent curve
rendering using programmable graphics hardware. ACM Trans.
Graph. 24, 3 (July), 1000–1009.

MANSON, J., AND SCHAEFER, S. 2011. Wavelet rasterization.
Computer Graphics Forum (Proceedings of Eurographics) 30,
2, 395–404.

MANSON, J., AND SCHAEFER, S. 2013. Analytic rasterization
of curves with polynomial filters. Computer Graphics Forum
(Proceedings of Eurographics) 32, 2, 499–507.

NEHAB, D., AND HOPPE, H. 2008. Random-access rendering
of general vector graphics. ACM Trans. Graph. 27, 5 (Dec.),
135:1–135:10.

NEWMAN, W. M., AND SPROULL, R. F. 1979. Principles of
interactive computer graphics. McGraw-Hill, Inc.

ORZAN, A., BOUSSEAU, A., WINNEMÖLLER, H., BARLA, P.,
THOLLOT, J., AND SALESIN, D. 2008. Diffusion curves: A
vector representation for smooth-shaded images. ACM Trans.
Graph. 27, 3 (Aug.), 92:1–92:8.

PARILOV, E., AND ZORIN, D. 2008. Real-time rendering of tex-
tures with feature curves. ACM Trans. Graph. 27, 1 (Mar.), 3:1–
3:15.

QIN, Z., MCCOOL, M. D., AND KAPLAN, C. 2008. Precise
vector textures for real-time 3d rendering. In Proceedings of the
2008 Symposium on Interactive 3D Graphics and Games, ACM,
New York, NY, USA, I3D ’08, 199–206.

SEGAL, M., AND AKELEY, K., 2003. The OpenGL graphics
system: A specification. http://www.opengl.org/documentation/
specs/version1.5/glspec15.pdf.

SENGUPTA, S., HARRIS, M., ZHANG, Y., AND OWENS, J. D.
2007. Scan primitives for gpu computing. In Proceedings of
the 22Nd ACM SIGGRAPH/EUROGRAPHICS Symposium on
Graphics Hardware, Eurographics Association, Aire-la-Ville,
Switzerland, Switzerland, GH ’07, 97–106.

SUN, X., XIE, G., DONG, Y., LIN, S., XU, W., WANG, W.,
TONG, X., AND GUO, B. 2012. Diffusion curve textures for
resolution independent texture mapping. ACM Trans. Graph. 31,
4 (July), 74:1–74:9.

SUN, T., THAMJAROENPORN, P., AND ZHENG, C. 2014. Fast
multipole representation of diffusion curves and points. ACM
Trans. Graph. 33, 4 (July), 53:1–53:12.

SVG, 2011. Scalable vector graphics, v. 1.1. W3C, second edition.

TILLER, W., AND HANSON, E. G. 1984. Offsets of two-
dimensional profiles. IEEE COMP. GRAPHICS APPLIC. 4, 9,
36–46.

WANG, L., ZHOU, K., YU, Y., AND GUO, B. 2010. Vector solid
textures. ACM Trans. Graph. 29, 4 (July), 86:1–86:8.

WARNOCK, J., AND WYATT, D. K. 1982. A device independent
graphics imaging model for use with raster devices. SIGGRAPH
Comput. Graph. 16, 3 (July), 313–319.

WEBKIT, 2016. Webkit, open source web browser engine. https:
//webkit.org/.

WHITINGTON, J. G. 2015. Two dimensional hidden surface re-
moval with frame-to-frame coherence. In Proceedings of the
31st Spring Conference on Computer Graphics, ACM, New
York, NY, USA, SCCG ’15, 141–149.

WYLIE, C., ROMNEY, G., EVANS, D., AND ERDAHL, A. 1967.
Half-tone perspective drawings by computer. In Proceedings
of the November 14-16, 1967, Fall Joint Computer Conference,
ACM, New York, NY, USA, AFIPS ’67 (Fall), 49–58.

https://nvlabs.github.io/moderngpu/
https://nvlabs.github.io/moderngpu/
http://cudpp.github.io/
http://www.slideshare.net/Mark_Kilgard/gtc-2014-nvidia-path-rendering
http://www.slideshare.net/Mark_Kilgard/gtc-2014-nvidia-path-rendering
http://www.opengl.org/documentation/specs/version1.5/glspec15.pdf
http://www.opengl.org/documentation/specs/version1.5/glspec15.pdf
https://webkit.org/
https://webkit.org/

